Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Recycling Pretrained Checkpoints: Orthogonal Growth of Mixture-of-Experts for Efficient Large Language Model Pre-Training – Takara TLDR

Claude automates reports and presentations effortlessly

UniMMVSR: A Unified Multi-Modal Framework for Cascaded Video Super-Resolution – Takara TLDR

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Hugging Face

Training-Free Group Relative Policy Optimization – Takara TLDR

By Advanced AI EditorOctober 12, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Recent advances in Large Language Model (LLM) agents have demonstrated their
promising general capabilities. However, their performance in specialized
real-world domains often degrades due to challenges in effectively integrating
external tools and specific prompting strategies. While methods like agentic
reinforcement learning have been proposed to address this, they typically rely
on costly parameter updates, for example, through a process that uses
Supervised Fine-Tuning (SFT) followed by a Reinforcement Learning (RL) phase
with Group Relative Policy Optimization (GRPO) to alter the output
distribution. However, we argue that LLMs can achieve a similar effect on the
output distribution by learning experiential knowledge as a token prior, which
is a far more lightweight approach that not only addresses practical data
scarcity but also avoids the common issue of overfitting. To this end, we
propose Training-Free Group Relative Policy Optimization (Training-Free GRPO),
a cost-effective solution that enhances LLM agent performance without any
parameter updates. Our method leverages the group relative semantic advantage
instead of numerical ones within each group of rollouts, iteratively distilling
high-quality experiential knowledge during multi-epoch learning on a minimal
ground-truth data. Such knowledge serves as the learned token prior, which is
seamlessly integrated during LLM API calls to guide model behavior. Experiments
on mathematical reasoning and web searching tasks demonstrate that
Training-Free GRPO, when applied to DeepSeek-V3.1-Terminus, significantly
improves out-of-domain performance. With just a few dozen training samples,
Training-Free GRPO outperforms fine-tuned small LLMs with marginal training
data and cost.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleSingapore company allegedly helped China smuggle $2 billion worth of Nvidia AI processors, report claims — Nvidia denies that the accused has any China ties, but a U.S. investigation is underway
Next Article UniMMVSR: A Unified Multi-Modal Framework for Cascaded Video Super-Resolution – Takara TLDR
Advanced AI Editor
  • Website

Related Posts

Recycling Pretrained Checkpoints: Orthogonal Growth of Mixture-of-Experts for Efficient Large Language Model Pre-Training – Takara TLDR

October 12, 2025

UniMMVSR: A Unified Multi-Modal Framework for Cascaded Video Super-Resolution – Takara TLDR

October 12, 2025

Memory Retrieval and Consolidation in Large Language Models through Function Tokens – Takara TLDR

October 12, 2025

Comments are closed.

Latest Posts

The Rubin Names 2025 Art Prize, Research and Art Projects Grants

Kochi-Muziris Biennial Announces 66 Artists for December Exhibition

Instagram Launches ‘Rings’ Awards for Creators—With KAWS as a Judge

Museums Prepare to Close Their Doors as Government Shutdown Continues

Latest Posts

Recycling Pretrained Checkpoints: Orthogonal Growth of Mixture-of-Experts for Efficient Large Language Model Pre-Training – Takara TLDR

October 12, 2025

Claude automates reports and presentations effortlessly

October 12, 2025

UniMMVSR: A Unified Multi-Modal Framework for Cascaded Video Super-Resolution – Takara TLDR

October 12, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Recycling Pretrained Checkpoints: Orthogonal Growth of Mixture-of-Experts for Efficient Large Language Model Pre-Training – Takara TLDR
  • Claude automates reports and presentations effortlessly
  • UniMMVSR: A Unified Multi-Modal Framework for Cascaded Video Super-Resolution – Takara TLDR
  • Training-Free Group Relative Policy Optimization – Takara TLDR
  • Singapore company allegedly helped China smuggle $2 billion worth of Nvidia AI processors, report claims — Nvidia denies that the accused has any China ties, but a U.S. investigation is underway

Recent Comments

  1. parifoot-afrique-550 on Anthropic’s popular Claude Code AI tool now included in its $20/month Pro plan
  2. parifoot-afrique-188 on Nebius Stock Soars on $1B AI Funding, Analyst Sees 75% Upside
  3. Casterwooder6Nalay on Using AI saves teachers ‘six weeks per year,’ Gallup poll finds – but at what cost?
  4. Linnea on Tesla threatened in France with claims of ‘deceptive’ practices
  5. Casterwooder6Nalay on Google DeepMind’s Demis Hassabis Wants to Build AI Email Assistant That Can Reply in Your Style: Report

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.