View a PDF of the paper titled From Data-Driven to Purpose-Driven Artificial Intelligence: Systems Thinking for Data-Analytic Automation of Patient Care, by Daniel Anadria and 8 other authors
View PDF
HTML (experimental)
Abstract:In this work, we reflect on the data-driven modeling paradigm that is gaining ground in AI-driven automation of patient care. We argue that the repurposing of existing real-world patient datasets for machine learning may not always represent an optimal approach to model development as it could lead to undesirable outcomes in patient care. We reflect on the history of data analysis to explain how the data-driven paradigm rose to popularity, and we envision ways in which systems thinking and clinical domain theory could complement the existing model development approaches in reaching human-centric outcomes. We call for a purpose-driven machine learning paradigm that is grounded in clinical theory and the sociotechnical realities of real-world operational contexts. We argue that understanding the utility of existing patient datasets requires looking in two directions: upstream towards the data generation, and downstream towards the automation objectives. This purpose-driven perspective to AI system development opens up new methodological opportunities and holds promise for AI automation of patient care.
Submission history
From: Daniel Anadria [view email]
[v1]
Mon, 16 Jun 2025 15:07:44 UTC (437 KB)
[v2]
Wed, 18 Jun 2025 08:20:25 UTC (437 KB)