Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Anthropic Revokes OpenAI’s Access to Claude

OpenAI reportedly raises $8.3B in funding after annualized revenue tops $13B

Ethan Thornton of Mach Industries takes the AI stage at Disrupt 2025

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Yannic Kilcher

Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search (Paper Explained)

By Advanced AI EditorMay 14, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email



Neural Architecture Search is usually prohibitively expensive in both time and resources to be useful. A search strategy has to keep evaluating new models, training them to convergence in an inner loop to find out if they are any good. This paper proposes to abstract the problem and extract the essential part of the architecture to be optimized into a smaller version and evaluates that version on specifically custom learned data points to predict its performance, which is much faster and cheaper than running the full model.

OUTLINE:
0:00 – Intro & High-Level Overview
1:00 – Neural Architecture Search
4:30 – Predicting performance via architecture encoding
7:50 – Synthetic Petri Dish
12:50 – Motivating MNIST example
18:15 – Entire Algorithm
23:00 – Producing the synthetic data
26:00 – Combination with architecture search
27:30 – PTB RNN-Cell Experiment
29:20 – Comments & Conclusion

Paper:
Code:

Abstract:
Neural Architecture Search (NAS) explores a large space of architectural motifs — a compute-intensive process that often involves ground-truth evaluation of each motif by instantiating it within a large network, and training and evaluating the network with thousands of domain-specific data samples. Inspired by how biological motifs such as cells are sometimes extracted from their natural environment and studied in an artificial Petri dish setting, this paper proposes the Synthetic Petri Dish model for evaluating architectural motifs. In the Synthetic Petri Dish, architectural motifs are instantiated in very small networks and evaluated using very few learned synthetic data samples (to effectively approximate performance in the full problem). The relative performance of motifs in the Synthetic Petri Dish can substitute for their ground-truth performance, thus accelerating the most expensive step of NAS. Unlike other neural network-based prediction models that parse the structure of the motif to estimate its performance, the Synthetic Petri Dish predicts motif performance by training the actual motif in an artificial setting, thus deriving predictions from its true intrinsic properties. Experiments in this paper demonstrate that the Synthetic Petri Dish can therefore predict the performance of new motifs with significantly higher accuracy, especially when insufficient ground truth data is available. Our hope is that this work can inspire a new research direction in studying the performance of extracted components of models in an alternative controlled setting.

Authors: Aditya Rawal, Joel Lehman, Felipe Petroski Such, Jeff Clune, Kenneth O. Stanley

Links:
YouTube:
Twitter:
BitChute:
Minds:

source

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleThis AI Learned Boxing…With Serious Knockout Power! 🥊
Next Article TensorWave raises $100M to grow its AMD-powered cloud infrastructure
Advanced AI Editor
  • Website

Related Posts

Context Rot: How Increasing Input Tokens Impacts LLM Performance (Paper Analysis)

July 23, 2025

Energy-Based Transformers are Scalable Learners and Thinkers (Paper Review)

July 19, 2025

Yannic Kilcher Live Stream

May 27, 2025
Leave A Reply

Latest Posts

Artist Tyrrell Winston Sues New Orleans Pelicans Over Instagram Posts

Blum Staffers Speak On Closure, Spiegler Slams Art ‘Financialization’

Theatre Director and Artist Dies at 83

France to Accelerate Return of Looted Artworks—and More Art News

Latest Posts

Anthropic Revokes OpenAI’s Access to Claude

August 2, 2025

OpenAI reportedly raises $8.3B in funding after annualized revenue tops $13B

August 2, 2025

Ethan Thornton of Mach Industries takes the AI stage at Disrupt 2025

August 2, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Anthropic Revokes OpenAI’s Access to Claude
  • OpenAI reportedly raises $8.3B in funding after annualized revenue tops $13B
  • Ethan Thornton of Mach Industries takes the AI stage at Disrupt 2025
  • Containerize legacy Spring Boot application using Amazon Q Developer CLI and MCP server
  • Light has two identities that are impossible to see at the same time

Recent Comments

  1. Mag-sign up upang makakuha ng 100 USDT on MIT and Harvard Medical School announce a new research pathway to fight Alzheimer’s disease
  2. Binance推荐代码 on Stability AI and Arm Release Lightweight Tex-to-Audio Model Optimised for Fast On-Device Generation
  3. NekofenKed on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. KexefHoalt on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. YovivMek on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.