Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

GT Podcast with Mulan: China opposes Japan’s space weaponization; Multiple govt agencies outline economic priorities for H2

Paper page – Flow Equivariant Recurrent Neural Networks

Google AI model mines trillions of images to create maps of Earth ‘at any place and time’

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Yannic Kilcher

SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization (Paper Explained)

By Advanced AI EditorMay 11, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email



#machinelearning #ai #google

The high-level architecture of CNNs has not really changed over the years. We tend to build high-resolution low-dimensional layers first, followed by ever more coarse, but deep layers. This paper challenges this decades-old heuristic and uses neural architecture search to find an alternative, called SpineNet that employs multiple rounds of re-scaling and long-range skip connections.

OUTLINE:
0:00 – Intro & Overview
1:00 – Problem Statement
2:30 – The Problem with Current Architectures
8:20 – Scale-Permuted Networks
11:40 – Neural Architecture Search
14:00 – Up- and Downsampling
19:10 – From ResNet to SpineNet
24:20 – Ablations
27:00 – My Idea: Attention Routing for CNNs
29:55 – More Experiments
34:45 – Conclusion & Comments

Papers:
Code:

Abstract:
Convolutional neural networks typically encode an input image into a series of intermediate features with decreasing resolutions. While this structure is suited to classification tasks, it does not perform well for tasks requiring simultaneous recognition and localization (e.g., object detection). The encoder-decoder architectures are proposed to resolve this by applying a decoder network onto a backbone model designed for classification tasks. In this paper, we argue encoder-decoder architecture is ineffective in generating strong multi-scale features because of the scale-decreased backbone. We propose SpineNet, a backbone with scale-permuted intermediate features and cross-scale connections that is learned on an object detection task by Neural Architecture Search. Using similar building blocks, SpineNet models outperform ResNet-FPN models by ~3% AP at various scales while using 10-20% fewer FLOPs. In particular, SpineNet-190 achieves 52.5% AP with a MaskR-CNN detector and achieves 52.1% AP with a RetinaNet detector on COCO for a single model without test-time augmentation, significantly outperforms prior art of detectors. SpineNet can transfer to classification tasks, achieving 5% top-1 accuracy improvement on a challenging iNaturalist fine-grained dataset. Code is at: this https URL.

Authors: Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing Tan, Yin Cui, Quoc V. Le, Xiaodan Song

Thumbnail art by Lucas Ferreira

Links:
YouTube:
Twitter:
Discord:
BitChute:
Minds:

source

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleFrom Mesh To Yarn… In Real Time! 🧶
Next Article AI Startups Dominate Global VC Funding in Q1 2025: Pitchbook
Advanced AI Editor
  • Website

Related Posts

Context Rot: How Increasing Input Tokens Impacts LLM Performance (Paper Analysis)

July 23, 2025

Energy-Based Transformers are Scalable Learners and Thinkers (Paper Review)

July 19, 2025

Yannic Kilcher Live Stream

May 27, 2025
Leave A Reply

Latest Posts

Theatre Director and Artist Dies at 83

France to Accelerate Return of Looted Artworks—and More Art News

Person Dies After Jumping from Whitney Museum

At Aspen Art Week, Bigger Fairs Make for a High-Altitude Market Bet

Latest Posts

GT Podcast with Mulan: China opposes Japan’s space weaponization; Multiple govt agencies outline economic priorities for H2

August 1, 2025

Paper page – Flow Equivariant Recurrent Neural Networks

August 1, 2025

Google AI model mines trillions of images to create maps of Earth ‘at any place and time’

August 1, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • GT Podcast with Mulan: China opposes Japan’s space weaponization; Multiple govt agencies outline economic priorities for H2
  • Paper page – Flow Equivariant Recurrent Neural Networks
  • Google AI model mines trillions of images to create maps of Earth ‘at any place and time’
  • AI Race Gets Hotter: Meta, Google, OpenAI battle it out to recruit talents — And they are offering millions! Here’s why
  • Shadow AI and Poor Governance Linked to Costlier Breaches

Recent Comments

  1. Anonymous on Nvidia CEO Jensen Huang calls US ban on H20 AI chip ‘deeply painful’
  2. Michaeltap on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. mowihfed on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. Yohotskego on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. KavowAXORO on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.