Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Paper page – CRISP-SAM2: SAM2 with Cross-Modal Interaction and Semantic Prompting for Multi-Organ Segmentation

International Business Machines (NYSE:IBM) Partners With Clark Atlanta University For AI Skill Development

Peer Review #1 [Audio only] | Two Minute Papers

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Amazon (Titan)
    • Anthropic (Claude 3)
    • Cohere (Command R)
    • Google DeepMind (Gemini)
    • IBM (Watsonx)
    • Inflection AI (Pi)
    • Meta (LLaMA)
    • OpenAI (GPT-4 / GPT-4o)
    • Reka AI
    • xAI (Grok)
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Facebook X (Twitter) Instagram
Advanced AI News
arXiv AI

Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation

Advanced AI EditorBy Advanced AI EditorJuly 5, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email



arXiv:2507.02253v1 Announce Type: new
Abstract: Progress in enhancing large language model (LLM) planning and reasoning capabilities is significantly hampered by the bottleneck of scalable, reliable data generation and evaluation. To overcome this, I introduce NL2FLOW, a fully automated system for parametrically generating planning problems – expressed in natural language, a structured intermediate representation, and formal PDDL – and rigorously evaluating the quality of generated plans. I demonstrate NL2FLOW’s capabilities by generating a dataset of 2296 problems in the automated workflow generation domain and evaluating multiple open-sourced, instruct-tuned LLMs. My results reveal that the highest performing models achieved 86% success in generating valid plans and 69% in generating optimal plans, specifically for problems with feasible solutions. Regression analysis shows that the influence of problem characteristics on plan generation is contingent on both model and prompt design. Notably, I observed that the highest success rate for translating natural language into a JSON representation of a plan was lower than the highest rate of generating a valid plan directly. This suggests that unnecessarily decomposing the reasoning task – introducing intermediate translation steps – may actually degrade performance, implying a benefit to models capable of reasoning directly from natural language to action. As I scale LLM reasoning to increasingly complex problems, the bottlenecks and sources of error within these systems will inevitably shift. Therefore, a dynamic understanding of these limitations – and the tools to systematically reveal them – will be crucial for unlocking the full potential of LLMs as intelligent problem solvers.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleNeural Programmer-Interpreters Learn To Write Programs | Two Minute Papers #34
Next Article C3 AI (AI) Applications Now Available in AWS Secret Region
Advanced AI Editor
  • Website

Related Posts

[2506.22355] Embodied AI Agents: Modeling the World

July 5, 2025

Reasoning on a Budget: A Survey of Adaptive and Controllable Test-Time Compute in LLMs

July 4, 2025

[2507.02103] What Neuroscience Can Teach AI About Learning in Continuously Changing Environments

July 4, 2025
Leave A Reply Cancel Reply

Latest Posts

Albright College is Selling Its Art Collection to Balance Its Books

Big Three Auction Houses Hold Old Masters Sales in London This Week

MFA Boston Returns Two Works to Kingdom of Benin

Tate’s £150M Endowment Campaign May Include Turbine Hall Naming Rights

Latest Posts

Paper page – CRISP-SAM2: SAM2 with Cross-Modal Interaction and Semantic Prompting for Multi-Organ Segmentation

July 5, 2025

International Business Machines (NYSE:IBM) Partners With Clark Atlanta University For AI Skill Development

July 5, 2025

Peer Review #1 [Audio only] | Two Minute Papers

July 5, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Paper page – CRISP-SAM2: SAM2 with Cross-Modal Interaction and Semantic Prompting for Multi-Organ Segmentation
  • International Business Machines (NYSE:IBM) Partners With Clark Atlanta University For AI Skill Development
  • Peer Review #1 [Audio only] | Two Minute Papers
  • C3 AI (AI) Applications Now Available in AWS Secret Region
  • Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation

Recent Comments

No comments to show.

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.