View a PDF of the paper titled DriveGPT: Scaling Autoregressive Behavior Models for Driving, by Xin Huang and 15 other authors
View PDF
HTML (experimental)
Abstract:We present DriveGPT, a scalable behavior model for autonomous driving. We model driving as a sequential decision-making task, and learn a transformer model to predict future agent states as tokens in an autoregressive fashion. We scale up our model parameters and training data by multiple orders of magnitude, enabling us to explore the scaling properties in terms of dataset size, model parameters, and compute. We evaluate DriveGPT across different scales in a planning task, through both quantitative metrics and qualitative examples, including closed-loop driving in complex real-world scenarios. In a separate prediction task, DriveGPT outperforms state-of-the-art baselines and exhibits improved performance by pretraining on a large-scale dataset, further validating the benefits of data scaling.
Submission history
From: Xin Huang [view email]
[v1]
Thu, 19 Dec 2024 00:06:09 UTC (11,506 KB)
[v2]
Wed, 12 Feb 2025 05:41:42 UTC (9,485 KB)
[v3]
Fri, 2 May 2025 01:02:47 UTC (11,338 KB)