Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

MIT Develops Low-Resource AI System to Control Soft Robots with Just One Image

Under Trump, U.S. an active investor at scale not seen outside major crises

Discovering and using Spelke segments

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Expert Blogs

Researchers claim breakthrough in fight against AI’s frustrating security hole

By Advanced AI EditorApril 16, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Here’s how it works. First, the system splits responsibilities between two language models: A “privileged LLM” (P-LLM) generates code that defines the steps to take—like calling a function to get the last email or sending a message. Think of this as the “planner module” that only processes direct user instructions.

Next, a “quarantined LLM” (Q-LLM) only parses unstructured data into structured outputs. Think of it as a temporary, isolated helper AI. It has no access to tools or memory and cannot take any actions, preventing it from being directly exploited. This is the “reader module” that extracts information but lacks permissions to execute actions. To further prevent information leakage, the Q-LLM uses a special boolean flag (“have_enough_information”) to signal if it can fulfill a parsing request, rather than potentially returning manipulated text back to the P-LLM if compromised.

The P-LLM never sees the content of emails or documents. It sees only that a value exists, such as “email = get_last_email()”, and then writes code that operates on it. This separation ensures that malicious text can’t influence which actions the AI decides to take.

CaMeL’s innovation extends beyond the dual-LLM approach. CaMeL converts the user’s prompt into a sequence of steps that are described using code. Google DeepMind chose to use a locked-down subset of Python because every available LLM is already adept at writing Python.

From prompt to secure execution

For example, Willison gives the example prompt “Find Bob’s email in my last email and send him a reminder about tomorrow’s meeting,” which would convert into code like this:

email = get_last_email()
address = query_quarantined_llm(
“Find Bob’s email address in [email]”,
output_schema=EmailStr
)
send_email(
subject=”Meeting tomorrow”,
body=”Remember our meeting tomorrow”,
recipient=address,
)

In this example, email is a potential source of untrusted tokens, which means the email address could be part of a prompt injection attack as well.

By using a special, secure interpreter to run this Python code, CaMeL can monitor it closely. As the code runs, the interpreter tracks where each piece of data comes from, which is called a “data trail.” For instance, it notes that the address variable was created using information from the potentially untrusted email variable. It then applies security policies based on this data trail. This process involves CaMeL analyzing the structure of the generated Python code (using the ast library) and running it systematically.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleThe Largest, Most Joyful Exhibit Worth The Trip
Next Article How to recut with Sora
Advanced AI Editor
  • Website

Related Posts

Delta’s AI spying to “jack up” prices must be banned, lawmakers say

July 25, 2025

Mistral’s new “environmental audit” shows how much AI is hurting the planet

July 25, 2025

Two major AI coding tools wiped out user data after making cascading mistakes

July 24, 2025
Leave A Reply

Latest Posts

David Geffen Sued By Estranged Husband for Breach of Contract

Auction House Will Sell Egyptian Artifact Despite Concern From Experts

Anish Kapoor Lists New York Apartment for $17.75 M.

Street Fighter 6 Community Rocked by AI Art Controversy

Latest Posts

MIT Develops Low-Resource AI System to Control Soft Robots with Just One Image

July 26, 2025

Under Trump, U.S. an active investor at scale not seen outside major crises

July 26, 2025

Discovering and using Spelke segments

July 26, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • MIT Develops Low-Resource AI System to Control Soft Robots with Just One Image
  • Under Trump, U.S. an active investor at scale not seen outside major crises
  • Discovering and using Spelke segments
  • Paper page – Iwin Transformer: Hierarchical Vision Transformer using Interleaved Windows
  • The Release Of DeepSeek Was A Win For America, Says NVIDIA CEO Jensen Huang

Recent Comments

  1. MichaelWinty on Local gov’t reps say they look forward to working with Thomas
  2. 4rabet mirror on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  3. Janine Bethel on OpenAI research reveals that simply teaching AI a little ‘misinformation’ can turn it into an entirely unethical ‘out-of-the-way AI’
  4. 打开Binance账户 on Tanka CEO Kisson Lin to talk AI-native startups at Sessions: AI
  5. Sign up to get 100 USDT on The Do LaB On Capturing Lightning In A Bottle

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.