#ai #technology #poker
This paper does for Poker what AlphaZero has done for Chess & Go. The combination of Self-Play Reinforcement Learning and Tree Search has had tremendous success in perfect-information games, but transferring such techniques to imperfect information games is a hard problem. Not only does ReBeL solve this problem, but it provably converges to a Nash Equilibrium and delivers a superhuman Heads Up No-Limit Hold’em bot with very little domain knowledge.
OUTLINE:
0:00 – Intro & Overview
3:20 – Rock, Paper, and Double Scissor
10:00 – AlphaZero Tree Search
18:30 – Notation Setup: Infostates & Nash Equilibria
31:45 – One Card Poker: Introducing Belief Representations
45:00 – Solving Games in Belief Representation
55:20 – The ReBeL Algorithm
1:04:00 – Theory & Experiment Results
1:07:00 – Broader Impact
1:10:20 – High-Level Summary
Paper:
Code:
Blog:
ERRATA: As someone last video pointed out: This is not the best Poker algorithm, but the best one that uses very little expert knowledge.
Abstract:
The combination of deep reinforcement learning and search at both training and test time is a powerful paradigm that has led to a number of successes in single-agent settings and perfect-information games, best exemplified by AlphaZero. However, prior algorithms of this form cannot cope with imperfect-information games. This paper presents ReBeL, a general framework for self-play reinforcement learning and search that provably converges to a Nash equilibrium in any two-player zero-sum game. In the simpler setting of perfect-information games, ReBeL reduces to an algorithm similar to AlphaZero. Results in two different imperfect-information games show ReBeL converges to an approximate Nash equilibrium. We also show ReBeL achieves superhuman performance in heads-up no-limit Texas hold’em poker, while using far less domain knowledge than any prior poker AI.
Authors: Noam Brown, Anton Bakhtin, Adam Lerer, Qucheng Gong
Links:
YouTube:
Twitter:
Discord:
BitChute:
Minds:
Parler:
LinkedIn:
If you want to support me, the best thing to do is to share out the content 🙂
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar:
Patreon:
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n
source