Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

New Benchmark for Domestic Image Creation! Volcano Engine Seedream 4.0 Released, Leading a New Trend in Multi-Image Creation with 4K Direct Output

ALSP Lawhive Buys Woodstock As SMB Market Evolves – Artificial Lawyer

F1: A Vision-Language-Action Model Bridging Understanding and Generation to Actions – Takara TLDR

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Hugging Face

Q-Sched: Pushing the Boundaries of Few-Step Diffusion Models with Quantization-Aware Scheduling – Takara TLDR

By Advanced AI EditorSeptember 10, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Text-to-image diffusion models are computationally intensive, often requiring
dozens of forward passes through large transformer backbones. For instance,
Stable Diffusion XL generates high-quality images with 50 evaluations of a
2.6B-parameter model, an expensive process even for a single batch. Few-step
diffusion models reduce this cost to 2-8 denoising steps but still depend on
large, uncompressed U-Net or diffusion transformer backbones, which are often
too costly for full-precision inference without datacenter GPUs. These
requirements also limit existing post-training quantization methods that rely
on full-precision calibration. We introduce Q-Sched, a new paradigm for
post-training quantization that modifies the diffusion model scheduler rather
than model weights. By adjusting the few-step sampling trajectory, Q-Sched
achieves full-precision accuracy with a 4x reduction in model size. To learn
quantization-aware pre-conditioning coefficients, we propose the JAQ loss,
which combines text-image compatibility with an image quality metric for
fine-grained optimization. JAQ is reference-free and requires only a handful of
calibration prompts, avoiding full-precision inference during calibration.
Q-Sched delivers substantial gains: a 15.5% FID improvement over the FP16
4-step Latent Consistency Model and a 16.6% improvement over the FP16 8-step
Phased Consistency Model, showing that quantization and few-step distillation
are complementary for high-fidelity generation. A large-scale user study with
more than 80,000 annotations further confirms Q-Sched’s effectiveness on both
FLUX.1[schnell] and SDXL-Turbo.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleWhat’s Going On With ASML Holding Stock Tuesday? – ASML Holding (NASDAQ:ASML)
Next Article Inhouse Day Preview – Artificial Lawyer
Advanced AI Editor
  • Website

Related Posts

F1: A Vision-Language-Action Model Bridging Understanding and Generation to Actions – Takara TLDR

September 10, 2025

Does DINOv3 Set a New Medical Vision Standard? – Takara TLDR

September 10, 2025

Reinforcement Learning Foundations for Deep Research Systems: A Survey – Takara TLDR

September 10, 2025

Comments are closed.

Latest Posts

Leon Black and Leslie Wexner’s Letters to Jeffrey Epstein Released

School of Visual Arts Transfers Ownership to Nonprofit Alumni Society

Cristin Tierney Moves Gallery to Tribeca for 15th Anniversary Exhibition

Anne Imhof Reimagines Football Jerseys with Nike

Latest Posts

New Benchmark for Domestic Image Creation! Volcano Engine Seedream 4.0 Released, Leading a New Trend in Multi-Image Creation with 4K Direct Output

September 10, 2025

ALSP Lawhive Buys Woodstock As SMB Market Evolves – Artificial Lawyer

September 10, 2025

F1: A Vision-Language-Action Model Bridging Understanding and Generation to Actions – Takara TLDR

September 10, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • New Benchmark for Domestic Image Creation! Volcano Engine Seedream 4.0 Released, Leading a New Trend in Multi-Image Creation with 4K Direct Output
  • ALSP Lawhive Buys Woodstock As SMB Market Evolves – Artificial Lawyer
  • F1: A Vision-Language-Action Model Bridging Understanding and Generation to Actions – Takara TLDR
  • The Fastest Inference Model Built on Qwen Using Cerebras Chips_model_the_This
  • OpenAI installs parental controls following California teen’s death

Recent Comments

  1. 你爸爸的鸡巴断了,你倒霉的阴部,你爸爸的网络钓鱼,你妈妈的内脏 on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. RichardDusty on Trump’s Tech Sanctions To Empower China, Betray America
  3. RichardDusty on TEFAF New York Illuminates Art Week With Mastery Of Vivid, Radiant Color
  4. rukumMup on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. RichardDusty on Jony Ive is building a futuristic AI device and OpenAI may acquire it

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.