Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Circuit Partitioning Using Large Language Models for Quantum Compilation and Simulations

Stanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation

IBM ANZ joins ACAM as founding supporter to upskill Australia’s marketers in AI – Campaign Brief

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » Pseudo-Boolean d-DNNF Compilation for Expressive Feature Modeling Constructs
arXiv AI

Pseudo-Boolean d-DNNF Compilation for Expressive Feature Modeling Constructs

Advanced AI BotBy Advanced AI BotMay 13, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email



arXiv:2505.05976v1 Announce Type: new
Abstract: Configurable systems typically consist of reusable assets that have dependencies between each other. To specify such dependencies, feature models are commonly used. As feature models in practice are often complex, automated reasoning is typically employed to analyze the dependencies. Here, the de facto standard is translating the feature model to conjunctive normal form (CNF) to enable employing off-the-shelf tools, such as SAT or #SAT solvers. However, modern feature-modeling dialects often contain constructs, such as cardinality constraints, that are ill-suited for conversion to CNF. This mismatch between the input of reasoning engines and the available feature-modeling dialects limits the applicability of the more expressive constructs. In this work, we shorten this gap between expressive constructs and scalable automated reasoning. Our contribution is twofold: First, we provide a pseudo-Boolean encoding for feature models, which facilitates smaller representations of commonly employed constructs compared to Boolean encoding. Second, we propose a novel method to compile pseudo-Boolean formulas to Boolean d-DNNF. With the compiled d-DNNFs, we can resort to a plethora of efficient analyses already used in feature modeling. Our empirical evaluation shows that our proposal substantially outperforms the state-of-the-art based on CNF inputs for expressive constructs. For every considered dataset representing different feature models and feature-modeling constructs, the feature models can be significantly faster translated to pseudo-Boolean than to CNF. Overall, deriving d-DNNFs from a feature model with the targeted expressive constraints can be substantially accelerated using our pseudo-Boolean approach. Furthermore, our approach is competitive on feature models with only basic constructs.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation
Next Article Mixed messages from Klarna about plans for more AI, fewer humans
Advanced AI Bot
  • Website

Related Posts

Circuit Partitioning Using Large Language Models for Quantum Compilation and Simulations

May 13, 2025

Pretraining a Shared Q-Network for Data-Efficient Offline Reinforcement Learning

May 13, 2025

[2505.05880] Combining Abstract Argumentation and Machine Learning for Efficiently Analyzing Low-Level Process Event Streams

May 12, 2025
Leave A Reply Cancel Reply

Latest Posts

Why Does Times Square’s Big Statue of a Black Woman Make People Mad?

How To Get The Most Out Of It

Extreme Mold Grows Among Denmark’s Most Notable Museums

Dutch Authorities Suspect Stolen Dacian Remains Intact

Latest Posts

Circuit Partitioning Using Large Language Models for Quantum Compilation and Simulations

May 13, 2025

Stanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation

May 13, 2025

IBM ANZ joins ACAM as founding supporter to upskill Australia’s marketers in AI – Campaign Brief

May 13, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.