UniTEX generates high-quality, consistent 3D textures by using Texture Functions and adapting Diffusion Transformers directly from images and geometry without UV mapping.
We present UniTEX, a novel two-stage 3D texture generation framework to
create high-quality, consistent textures for 3D assets. Existing approaches
predominantly rely on UV-based inpainting to refine textures after reprojecting
the generated multi-view images onto the 3D shapes, which introduces challenges
related to topological ambiguity. To address this, we propose to bypass the
limitations of UV mapping by operating directly in a unified 3D functional
space. Specifically, we first propose that lifts texture generation into 3D
space via Texture Functions (TFs)–a continuous, volumetric representation that
maps any 3D point to a texture value based solely on surface proximity,
independent of mesh topology. Then, we propose to predict these TFs directly
from images and geometry inputs using a transformer-based Large Texturing Model
(LTM). To further enhance texture quality and leverage powerful 2D priors, we
develop an advanced LoRA-based strategy for efficiently adapting large-scale
Diffusion Transformers (DiTs) for high-quality multi-view texture synthesis as
our first stage. Extensive experiments demonstrate that UniTEX achieves
superior visual quality and texture integrity compared to existing approaches,
offering a generalizable and scalable solution for automated 3D texture
generation. Code will available in: https://github.com/YixunLiang/UniTEX.