Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

MIT president rejects proposal tying funding to Trump’s political agenda

Learning on the Job: An Experience-Driven Self-Evolving Agent for Long-Horizon Tasks – Takara TLDR

Assessing Valuation After NVIDIA AI Partnership and Manufacturing Expansion

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Hugging Face

Paper page – TR2M: Transferring Monocular Relative Depth to Metric Depth with Language Descriptions and Scale-Oriented Contrast

By Advanced AI EditorJune 18, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


A framework, TR2M, uses multimodal inputs to rescale relative depth to metric depth, enhancing performance across various datasets through cross-modality attention and contrastive learning.

This work presents a generalizable framework to transfer relative depth to
metric depth. Current monocular depth estimation methods are mainly divided
into metric depth estimation (MMDE) and relative depth estimation (MRDE). MMDEs
estimate depth in metric scale but are often limited to a specific domain.
MRDEs generalize well across different domains, but with uncertain scales which
hinders downstream applications. To this end, we aim to build up a framework to
solve scale uncertainty and transfer relative depth to metric depth. Previous
methods used language as input and estimated two factors for conducting
rescaling. Our approach, TR2M, utilizes both text description and image as
inputs and estimates two rescale maps to transfer relative depth to metric
depth at pixel level. Features from two modalities are fused with a
cross-modality attention module to better capture scale information. A strategy
is designed to construct and filter confident pseudo metric depth for more
comprehensive supervision. We also develop scale-oriented contrastive learning
to utilize depth distribution as guidance to enforce the model learning about
intrinsic knowledge aligning with the scale distribution. TR2M only exploits a
small number of trainable parameters to train on datasets in various domains
and experiments not only demonstrate TR2M’s great performance in seen datasets
but also reveal superior zero-shot capabilities on five unseen datasets. We
show the huge potential in pixel-wise transferring relative depth to metric
depth with language assistance. (Code is available at:
https://github.com/BeileiCui/TR2M)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleLuxembourg signs strategic partnership with AI unicorn Mistral
Next Article C3 AI Lists Solutions in AWS Marketplace in the AWS Secret Region
Advanced AI Editor
  • Website

Related Posts

Learning on the Job: An Experience-Driven Self-Evolving Agent for Long-Horizon Tasks – Takara TLDR

October 12, 2025

Recycling Pretrained Checkpoints: Orthogonal Growth of Mixture-of-Experts for Efficient Large Language Model Pre-Training – Takara TLDR

October 12, 2025

UniMMVSR: A Unified Multi-Modal Framework for Cascaded Video Super-Resolution – Takara TLDR

October 12, 2025
Leave A Reply

Latest Posts

The Rubin Names 2025 Art Prize, Research and Art Projects Grants

Kochi-Muziris Biennial Announces 66 Artists for December Exhibition

Instagram Launches ‘Rings’ Awards for Creators—With KAWS as a Judge

Museums Prepare to Close Their Doors as Government Shutdown Continues

Latest Posts

MIT president rejects proposal tying funding to Trump’s political agenda

October 12, 2025

Learning on the Job: An Experience-Driven Self-Evolving Agent for Long-Horizon Tasks – Takara TLDR

October 12, 2025

Assessing Valuation After NVIDIA AI Partnership and Manufacturing Expansion

October 12, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • MIT president rejects proposal tying funding to Trump’s political agenda
  • Learning on the Job: An Experience-Driven Self-Evolving Agent for Long-Horizon Tasks – Takara TLDR
  • Assessing Valuation After NVIDIA AI Partnership and Manufacturing Expansion
  • The launch of IBM Quantum System Two is Europe’s quantum moment
  • How to Use New AI Tools to Simplify Daily Life

Recent Comments

  1. Https://Demairena.Com/Fuball-Wetten-Und-Online-Casino on Stanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation
  2. JungleEchoK2Nalay on Stanford HAI’s annual report highlights rapid adoption and growing accessibility of powerful AI systems
  3. Sportwetten Schweiz Kiosk on Google DeepMind announces SignGemma: AI for Sign Language
  4. Alisha on Amazon’s Andy Jassy warns of job cuts due to generative AI
  5. parifoot-353 on C3 AI and Arcfield Announce Partnership to Accelerate AI Capabilities to Serve U.S. Defense and Intelligence Communities

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.