Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

What is Mistral AI? Everything to know about the OpenAI competitor

DeepSeek Took Advantage Of Natural Efficiency Gains Because Their Model Was Released Late: Anthropic Researcher

Qwen 2.5 Coder and Qwen 3 Lead in Open Source LLM Over DeepSeek and Meta

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » Paper page – Think-RM: Enabling Long-Horizon Reasoning in Generative Reward Models
Hugging Face

Paper page – Think-RM: Enabling Long-Horizon Reasoning in Generative Reward Models

Advanced AI BotBy Advanced AI BotMay 25, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Think-RM is a framework that enhances generative reward models with long-horizon reasoning and a novel pairwise RLHF pipeline to improve end-policy performance in aligning large language models with human preferences.

Reinforcement learning from human feedback (RLHF) has become a powerful
post-training paradigm for aligning large language models with human
preferences. A core challenge in RLHF is constructing accurate reward signals,
where the conventional Bradley-Terry reward models (BT RMs) often suffer from
sensitivity to data size and coverage, as well as vulnerability to reward
hacking. Generative reward models (GenRMs) offer a more robust alternative by
generating chain-of-thought (CoT) rationales followed by a final reward.
However, existing GenRMs rely on shallow, vertically scaled reasoning, limiting
their capacity to handle nuanced or complex (e.g., reasoning-intensive) tasks.
Moreover, their pairwise preference outputs are incompatible with standard RLHF
algorithms that require pointwise reward signals. In this work, we introduce
Think-RM, a training framework that enables long-horizon reasoning in GenRMs by
modeling an internal thinking process. Rather than producing structured,
externally provided rationales, Think-RM generates flexible, self-guided
reasoning traces that support advanced capabilities such as self-reflection,
hypothetical reasoning, and divergent reasoning. To elicit these reasoning
abilities, we first warm-up the models by supervised fine-tuning (SFT) over
long CoT data. We then further improve the model’s long-horizon abilities by
rule-based reinforcement learning (RL). In addition, we propose a novel
pairwise RLHF pipeline that directly optimizes policies using pairwise
preference rewards, eliminating the need for pointwise reward conversion and
enabling more effective use of Think-RM outputs. Experiments show that Think-RM
achieves state-of-the-art results on RM-Bench, outperforming both BT RM and
vertically scaled GenRM by 8%. When combined with our pairwise RLHF pipeline,
it demonstrates superior end-policy performance compared to traditional
approaches.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStability AI and Arm Release Lightweight Tex-to-Audio Model Optimised for Fast On-Device Generation
Next Article Nvidia CEO Jensen Huang calls US ban on H20 AI chip ‘deeply painful’
Advanced AI Bot
  • Website

Related Posts

Paper page – VLM-R^3: Region Recognition, Reasoning, and Refinement for Enhanced Multimodal Chain-of-Thought

May 25, 2025

Paper page – RAVENEA: A Benchmark for Multimodal Retrieval-Augmented Visual Culture Understanding

May 25, 2025

Paper page – How Do Large Vision-Language Models See Text in Image? Unveiling the Distinctive Role of OCR Heads

May 25, 2025
Leave A Reply Cancel Reply

Latest Posts

Expanded Taos Art Museum Improves Display And Care Of Collection

Pro-Palestine Protests Disrupt Whitney Free Friday Event

Peter Murphy Finds ‘Clarity in Chaos’ on New Solo Album Silver Shade

Documentary Photographer Dies at 81

Latest Posts

What is Mistral AI? Everything to know about the OpenAI competitor

May 25, 2025

DeepSeek Took Advantage Of Natural Efficiency Gains Because Their Model Was Released Late: Anthropic Researcher

May 25, 2025

Qwen 2.5 Coder and Qwen 3 Lead in Open Source LLM Over DeepSeek and Meta

May 25, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.