Show-o2 leverages autoregressive modeling and flow matching within a 3D causal variational autoencoder to create unified visual representations for multimodal understanding and generation tasks.
This paper presents improved native unified multimodal models, i.e.,
Show-o2, that leverage autoregressive modeling and flow matching. Built upon a
3D causal variational autoencoder space, unified visual representations are
constructed through a dual-path of spatial (-temporal) fusion, enabling
scalability across image and video modalities while ensuring effective
multimodal understanding and generation. Based on a language model,
autoregressive modeling and flow matching are natively applied to the language
head and flow head, respectively, to facilitate text token prediction and
image/video generation. A two-stage training recipe is designed to effectively
learn and scale to larger models. The resulting Show-o2 models demonstrate
versatility in handling a wide range of multimodal understanding and generation
tasks across diverse modalities, including text, images, and videos. Code and
models are released at https://github.com/showlab/Show-o.