Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Google faces EU antitrust complaint over AI Overviews

Automatic Parameter Control for Metropolis Light Transport | Two Minute Papers #30

Paper page – Energy-Based Transformers are Scalable Learners and Thinkers

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Amazon (Titan)
    • Anthropic (Claude 3)
    • Cohere (Command R)
    • Google DeepMind (Gemini)
    • IBM (Watsonx)
    • Inflection AI (Pi)
    • Meta (LLaMA)
    • OpenAI (GPT-4 / GPT-4o)
    • Reka AI
    • xAI (Grok)
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Facebook X (Twitter) Instagram
Advanced AI News
Hugging Face

Paper page – Selecting and Merging: Towards Adaptable and Scalable Named Entity Recognition with Large Language Models

Advanced AI EditorBy Advanced AI EditorJuly 5, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


A framework dynamically selects and merges pre-trained domain-specific models for efficient and scalable information extraction tasks.

Supervised fine-tuning (SFT) is widely used to align large language models
(LLMs) with information extraction (IE) tasks, such as named entity recognition
(NER). However, annotating such fine-grained labels and training
domain-specific models is costly. Existing works typically train a unified
model across multiple domains, but such approaches lack adaptation and
scalability since not all training data benefits target domains and scaling
trained models remains challenging. We propose the SaM framework, which
dynamically Selects and Merges expert models at inference time. Specifically,
for a target domain, we select domain-specific experts pre-trained on existing
domains based on (i) domain similarity to the target domain and (ii)
performance on sampled instances, respectively. The experts are then merged to
create task-specific models optimized for the target domain. By dynamically
merging experts beneficial to target domains, we improve generalization across
various domains without extra training. Additionally, experts can be added or
removed conveniently, leading to great scalability. Extensive experiments on
multiple benchmarks demonstrate our framework’s effectiveness, which
outperforms the unified model by an average of 10%. We further provide insights
into potential improvements, practical experience, and extensions of our
framework.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleMicrosoft Says Its New AI System Diagnosed Patients 4 Times More Accurately Than Human Doctors
Next Article Shutterstock Expands AI Horizons: New Partnership with Reka AI to Enhance Digital Asset Metadata
Advanced AI Editor
  • Website

Related Posts

Paper page – Energy-Based Transformers are Scalable Learners and Thinkers

July 5, 2025

Paper page – ZeCO: Zero Communication Overhead Sequence Parallelism for Linear Attention

July 5, 2025

Paper page – HalluSegBench: Counterfactual Visual Reasoning for Segmentation Hallucination Evaluation

July 5, 2025
Leave A Reply Cancel Reply

Latest Posts

Albright College is Selling Its Art Collection to Balance Its Books

Big Three Auction Houses Hold Old Masters Sales in London This Week

MFA Boston Returns Two Works to Kingdom of Benin

Tate’s £150M Endowment Campaign May Include Turbine Hall Naming Rights

Latest Posts

Google faces EU antitrust complaint over AI Overviews

July 5, 2025

Automatic Parameter Control for Metropolis Light Transport | Two Minute Papers #30

July 5, 2025

Paper page – Energy-Based Transformers are Scalable Learners and Thinkers

July 5, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Google faces EU antitrust complaint over AI Overviews
  • Automatic Parameter Control for Metropolis Light Transport | Two Minute Papers #30
  • Paper page – Energy-Based Transformers are Scalable Learners and Thinkers
  • OpenAI warns staff to ignore Meta’s ‘ridiculous’ offers as poaching battle escalates
  • Randomness and Bell’s Inequality [Audio only] | Two Minute Papers #31

Recent Comments

No comments to show.

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.