RLVR-World uses reinforcement learning with verifiable rewards to optimize world models for task-specific metrics, achieving improved performance across language and video domains.
World models predict state transitions in response to actions and are
increasingly developed across diverse modalities. However, standard training
objectives such as maximum likelihood estimation (MLE) often misalign with
task-specific goals of world models, i.e., transition prediction metrics like
accuracy or perceptual quality. In this paper, we present RLVR-World, a unified
framework that leverages reinforcement learning with verifiable rewards (RLVR)
to directly optimize world models for such metrics. Despite formulating world
modeling as autoregressive prediction of tokenized sequences, RLVR-World
evaluates metrics of decoded predictions as verifiable rewards. We demonstrate
substantial performance gains on both language- and video-based world models
across domains, including text games, web navigation, and robot manipulation.
Our work indicates that, beyond recent advances in reasoning language models,
RLVR offers a promising post-training paradigm for enhancing the utility of
generative models more broadly.