Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

China Questions Security of Nvidia’s H20 AI Chip Amid Rising Tech Tensions

Structured outputs with Amazon Nova: A guide for builders

Stability AI Intros Stable Diffusion 3.5 Text-to-Image Generation Model — THE Journal

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Hugging Face

Paper page – Retrieval-Augmented Generation with Conflicting Evidence

By Advanced AI EditorApril 18, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Large language model (LLM) agents are increasingly employing
retrieval-augmented generation (RAG) to improve the factuality of their
responses. However, in practice, these systems often need to handle ambiguous
user queries and potentially conflicting information from multiple sources
while also suppressing inaccurate information from noisy or irrelevant
documents. Prior work has generally studied and addressed these challenges in
isolation, considering only one aspect at a time, such as handling ambiguity or
robustness to noise and misinformation. We instead consider multiple factors
simultaneously, proposing (i) RAMDocs (Retrieval with Ambiguity and
Misinformation in Documents), a new dataset that simulates complex and
realistic scenarios for conflicting evidence for a user query, including
ambiguity, misinformation, and noise; and (ii) MADAM-RAG, a multi-agent
approach in which LLM agents debate over the merits of an answer over multiple
rounds, allowing an aggregator to collate responses corresponding to
disambiguated entities while discarding misinformation and noise, thereby
handling diverse sources of conflict jointly. We demonstrate the effectiveness
of MADAM-RAG using both closed and open-source models on AmbigDocs — which
requires presenting all valid answers for ambiguous queries — improving over
strong RAG baselines by up to 11.40% and on FaithEval — which requires
suppressing misinformation — where we improve by up to 15.80% (absolute) with
Llama3.3-70B-Instruct. Furthermore, we find that RAMDocs poses a challenge for
existing RAG baselines (Llama3.3-70B-Instruct only obtains 32.60 exact match
score). While MADAM-RAG begins to address these conflicting factors, our
analysis indicates that a substantial gap remains especially when increasing
the level of imbalance in supporting evidence and misinformation.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleJames Cameron Wants to Use AI to ‘Cut the Cost’ of Making Films
Next Article Demystifying C3.ai: Insights From 8 Analyst Reviews – C3.ai (NYSE:AI)
Advanced AI Editor
  • Website

Related Posts

Paper page – ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents

July 31, 2025

Paper page – Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance

July 31, 2025

Paper page – Towards Omnimodal Expressions and Reasoning in Referring Audio-Visual Segmentation

July 31, 2025
Leave A Reply

Latest Posts

France to Accelerate Return of Looted Artworks—and More Art News

Person Dies After Jumping from Whitney Museum

At Aspen Art Week, Bigger Fairs Make for a High-Altitude Market Bet

Critics Blame Tate’s Programing for Low Football

Latest Posts

China Questions Security of Nvidia’s H20 AI Chip Amid Rising Tech Tensions

July 31, 2025

Structured outputs with Amazon Nova: A guide for builders

July 31, 2025

Stability AI Intros Stable Diffusion 3.5 Text-to-Image Generation Model — THE Journal

July 31, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • China Questions Security of Nvidia’s H20 AI Chip Amid Rising Tech Tensions
  • Structured outputs with Amazon Nova: A guide for builders
  • Stability AI Intros Stable Diffusion 3.5 Text-to-Image Generation Model — THE Journal
  • Google DeepMind releases highly accurate AI model map of Earth
  • How AI is building the future of our cities

Recent Comments

  1. Michaeltap on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. mowihfed on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. Yohotskego on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. KavowAXORO on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. Momustwrink on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.