Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Stanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation

New MIT CSAIL study suggests that AI won’t steal as many jobs as expected

Pittsburgh weekly roundup: Axios-OpenAI partnership; Buttigieg visits CMU; AI ‘employees’ in the nonprofit industry

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » Paper page – LoHoVLA: A Unified Vision-Language-Action Model for Long-Horizon Embodied Tasks
Hugging Face

Paper page – LoHoVLA: A Unified Vision-Language-Action Model for Long-Horizon Embodied Tasks

Advanced AI BotBy Advanced AI BotJune 3, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


A unified vision language action framework, LoHoVLA, combines a large pretrained vision language model with hierarchical closed-loop control to improve performance on long-horizon embodied tasks.

Real-world embodied agents face long-horizon tasks, characterized by
high-level goals demanding multi-step solutions beyond single actions.
Successfully navigating these requires both high-level task planning (i.e.,
decomposing goals into sub-tasks) and low-level motion control (i.e.,
generating precise robot actions). While existing vision language action (VLA)
models and hierarchical architectures offer potential in embodied tasks, the
former often falter in planning, and the latter can suffer from coordination
issues, both hampering performance. We introduce a new unified VLA framework
for long-horizon tasks, dubbed LoHoVLA, to overcome these limitations. LoHoVLA
leverages a large pretrained vision language model (VLM) as the backbone to
jointly generate language and action tokens for sub-task generation and robot
action prediction, respectively. This shared representation promotes better
generalization across tasks. Additionally, LoHoVLA embraces a hierarchical
closed-loop control mechanism to mitigate errors originating from both
high-level planning and low-level control. To train LoHoVLA, we introduce
LoHoSet, a dataset built on the Ravens simulator, containing 20 long-horizon
tasks, each with 1,000 expert demonstrations composed of visual observations,
linguistic goals, sub-tasks, and robot actions. Experimental results show that
LoHoVLA significantly surpasses both hierarchical and standard VLA approaches
on long-horizon embodied tasks in the Ravens simulator. These findings
underscore the promise of unified architectures for advancing generalizable
embodied intelligence.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleEndless Web3 Genesis Cloud and Stability AI enhance Luffa app to accelerate decentralized AI adoption
Next Article Nvidia Faces $8B Hit as U.S. Halts H20 AI Chip Exports to China
Advanced AI Bot
  • Website

Related Posts

Paper page – DINGO: Constrained Inference for Diffusion LLMs

June 5, 2025

Paper page – One Missing Piece for Open-Source Reasoning Models: A Dataset to Mitigate Cold-Starting Short CoT LLMs in RL

June 5, 2025

Paper page – LumosFlow: Motion-Guided Long Video Generation

June 5, 2025
Leave A Reply Cancel Reply

Latest Posts

Curtain Up On 85 Years Of American Ballet Theatre

Is Quiet Luxury Over? Top Designer André Fu Believes It’s Here To Stay

UK Museums Defend Corporate Funding Amid ‘Relentless Negativity’

The ‘Doctor Who’ Regeneration Controversy, Explained

Latest Posts

Stanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation

June 5, 2025

New MIT CSAIL study suggests that AI won’t steal as many jobs as expected

June 5, 2025

Pittsburgh weekly roundup: Axios-OpenAI partnership; Buttigieg visits CMU; AI ‘employees’ in the nonprofit industry

June 5, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.