Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

MIT Students Break New Ground in Engineering Design with AI and

Inhouse Day Preview – Artificial Lawyer

Q-Sched: Pushing the Boundaries of Few-Step Diffusion Models with Quantization-Aware Scheduling – Takara TLDR

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Hugging Face

Paper page – Geometry-Editable and Appearance-Preserving Object Compositon

By Advanced AI EditorJune 6, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


The Disentangled Geometry-editable and Appearance-preserving Diffusion (DGAD) model effectively integrates target objects into background scenes by using semantic embeddings for geometry and cross-attention for appearance alignment.

General object composition (GOC) aims to seamlessly integrate a target object
into a background scene with desired geometric properties, while simultaneously
preserving its fine-grained appearance details. Recent approaches derive
semantic embeddings and integrate them into advanced diffusion models to enable
geometry-editable generation. However, these highly compact embeddings encode
only high-level semantic cues and inevitably discard fine-grained appearance
details. We introduce a Disentangled Geometry-editable and
Appearance-preserving Diffusion (DGAD) model that first leverages semantic
embeddings to implicitly capture the desired geometric transformations and then
employs a cross-attention retrieval mechanism to align fine-grained appearance
features with the geometry-edited representation, facilitating both precise
geometry editing and faithful appearance preservation in object composition.
Specifically, DGAD builds on CLIP/DINO-derived and reference networks to
extract semantic embeddings and appearance-preserving representations, which
are then seamlessly integrated into the encoding and decoding pipelines in a
disentangled manner. We first integrate the semantic embeddings into
pre-trained diffusion models that exhibit strong spatial reasoning capabilities
to implicitly capture object geometry, thereby facilitating flexible object
manipulation and ensuring effective editability. Then, we design a dense
cross-attention mechanism that leverages the implicitly learned object geometry
to retrieve and spatially align appearance features with their corresponding
regions, ensuring faithful appearance consistency. Extensive experiments on
public benchmarks demonstrate the effectiveness of the proposed DGAD framework.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleClass Dismissed? Representative Claims in Getty v. Stability AI | Cooley LLP
Next Article Trump’s Tech Sanctions To Empower China, Betray America
Advanced AI Editor
  • Website

Related Posts

Q-Sched: Pushing the Boundaries of Few-Step Diffusion Models with Quantization-Aware Scheduling – Takara TLDR

September 10, 2025

Does DINOv3 Set a New Medical Vision Standard? – Takara TLDR

September 10, 2025

Reinforcement Learning Foundations for Deep Research Systems: A Survey – Takara TLDR

September 10, 2025
Leave A Reply

Latest Posts

Leon Black and Leslie Wexner’s Letters to Jeffrey Epstein Released

School of Visual Arts Transfers Ownership to Nonprofit Alumni Society

Cristin Tierney Moves Gallery to Tribeca for 15th Anniversary Exhibition

Anne Imhof Reimagines Football Jerseys with Nike

Latest Posts

MIT Students Break New Ground in Engineering Design with AI and

September 10, 2025

Inhouse Day Preview – Artificial Lawyer

September 10, 2025

Q-Sched: Pushing the Boundaries of Few-Step Diffusion Models with Quantization-Aware Scheduling – Takara TLDR

September 10, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • MIT Students Break New Ground in Engineering Design with AI and
  • Inhouse Day Preview – Artificial Lawyer
  • Q-Sched: Pushing the Boundaries of Few-Step Diffusion Models with Quantization-Aware Scheduling – Takara TLDR
  • What’s Going On With ASML Holding Stock Tuesday? – ASML Holding (NASDAQ:ASML)
  • UAE Releases ‘Fastest Inference Model’ Named Kimi, Based on Alibaba’s Qwen and Utilizing the World’s Largest Chip_Cheng_model_Things

Recent Comments

  1. XoxoqasBuP on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. Brianesomy on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. رشته میکروبیولوژی چیست on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. Brianesomy on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. buôn bán nội tạng on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.