Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • Franรงois Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog ยป AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw ยป AI Art
    • Artvy Blog ยป AI Art Blog
What's Hot

OM1โ€™s PhenOMยฎ Foundation AI Surpasses One Billion Years of Health History in Model Training

Exclusive: AI Bests Virus Experts, Raising Biohazard Fears

Insights into C3.ai’s Upcoming Earnings – C3.ai (NYSE:AI)

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • Franรงois Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog ยป AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw ยป AI Art
    • Artvy Blog ยป AI Art Blog
Advanced AI News
Home ยป Paper page – Fixing Data That Hurts Performance: Cascading LLMs to Relabel Hard Negatives for Robust Information Retrieval
Hugging Face

Paper page – Fixing Data That Hurts Performance: Cascading LLMs to Relabel Hard Negatives for Robust Information Retrieval

Advanced AI BotBy Advanced AI BotMay 26, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Did you know that fine-tuning retrievers & re-rankers on large but unclean training datasets can harm their performance? ๐Ÿ˜ก

In our new preprint, we reexamine the quality of popular IR training data by pruning datasets and identifying and relabeling ๐Ÿ๐š๐ฅ๐ฌ๐ž-๐ง๐ž๐ ๐š๐ญ๐ข๐ฏ๐ž๐ฌ!

Preprint: https://arxiv.org/abs/2505.16967

๐ŸŒŸ๐๐ซ๐ž๐ฅ๐ข๐ฆ๐ข๐ง๐š๐ซ๐ฒ
We fine-tune E5 (base) on 16 retrieval datasets from BGE collection (1.6M training pairs) and conduct a leave-one-out analysis: leaving one dataset out and fine-tuning on the rest. Removing ELI5 alone surprisingly can improve nDCG@10 on 7/14 BEIR datasets! ๐Ÿคฏ

๐Ÿš€ ๐ƒ๐š๐ญ๐š๐ฌ๐ž๐ญ ๐๐ซ๐ฎ๐ง๐ข๐ง๐ 
1๏ธโƒฃ We effectively prune 8/15 training datasets, leaving 7 datasets, reducing the training pairs by 2.35x (1.6M -> 680K pairs).
2๏ธโƒฃ E5 (base) fine-tuned on 7 datasets outperforms the model on all 15 datasets, by 1.0 nDCG@10 on BEIR.
3๏ธโƒฃ This shows that some datasets are harmful to model performance.

๐Ÿ“Š ๐…๐š๐ฅ๐ฌ๐ž ๐๐ž๐ ๐š๐ญ๐ข๐ฏ๐ž๐ฌ
In pruned training datasets, we observe a common issue of “false negatives”: where hard negatives are incorrectly classified as irrelevant! We propose a LLM judge cascading framework (๐‘๐‹๐‡๐) to identify and relabel these false negatives in training datasets.

We carefully measure three operations with identified false negatives in training pairs:
1๏ธโƒฃ Remove: Discard the training pair completely with a false negative.
2๏ธโƒฃ HN Remove: Discard only the false negatives from the list of hard negatives
3๏ธโƒฃ ๐‘๐‹๐‡๐: Relabel the false negatives as positives, while keeping the remaining list of hard negatives.

๐Ÿ“Š ๐„๐ฑ๐ฉ๐ž๐ซ๐ข๐ฆ๐ž๐ง๐ญ๐š๐ฅ ๐‘๐ž๐ฌ๐ฎ๐ฅ๐ญ๐ฌ
๐‘๐‹๐‡๐ gains the best improvement in retrievers and rerankers in contrast to other approaches. ๐‘๐‹๐‡๐ starts to show consistent gains even if we label a small subset of training pairs, especially the OOD nDCG@10 on BEIR (Avg. 7) and AIR-Bench (Avg. 5), both improve steadily with more and more clean data.

We also qualitatively analyzed the different categories of identified false negatives, e.g., the query can be ambiguous, which can lead to many hard negatives actually relevant to it.

Paper: https://arxiv.org/abs/2505.16967
Code: https://github.com/castorini/rlhn
Data: https://huggingface.co/rlhn



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStability AI & Arm Launch On-Device, Royalty-Free Text to Audio AI Model
Next Article Nvidia CEO Jensen Huang calls US ban on H20 AI chip โ€˜deeply painfulโ€™
Advanced AI Bot
  • Website

Related Posts

Paper page – Interleaved Reasoning for Large Language Models via Reinforcement Learning

May 27, 2025

Paper page – Error Typing for Smarter Rewards: Improving Process Reward Models with Error-Aware Hierarchical Supervision

May 27, 2025

Paper page – Towards Holistic Evaluation of Large Audio-Language Models: A Comprehensive Survey

May 27, 2025
Leave A Reply Cancel Reply

Latest Posts

London’s Camden Art Centre Gets 99-Year Lease on Current Home

12 Funny Animal Photos Never Seen Before

The Major Players Behind The Brands

Venice Biennale Moves Forward with Koyo Kouoh’s 2026 Exhibition

Latest Posts

OM1โ€™s PhenOMยฎ Foundation AI Surpasses One Billion Years of Health History in Model Training

May 27, 2025

Exclusive: AI Bests Virus Experts, Raising Biohazard Fears

May 27, 2025

Insights into C3.ai’s Upcoming Earnings – C3.ai (NYSE:AI)

May 27, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI Newsโ€”your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.