A structured framework and datasets for training customer service agents using well-defined support strategies improve the quality of customer support interactions and problem resolution.
Effective customer support requires not only accurate problem solving but
also structured and empathetic communication aligned with professional
standards. However, existing dialogue datasets often lack strategic guidance,
and real-world service data is difficult to access and annotate. To address
this, we introduce the task of Customer Support Conversation (CSC), aimed at
training customer service agents to respond using well-defined support
strategies. We propose a structured CSC framework grounded in COPC guidelines,
defining five conversational stages and twelve strategies to guide high-quality
interactions. Based on this, we construct CSConv, an evaluation dataset of
1,855 real-world customer-agent conversations rewritten using LLMs to reflect
deliberate strategy use, and annotated accordingly. Additionally, we develop a
role-playing approach that simulates strategy-rich conversations using
LLM-powered roles aligned with the CSC framework, resulting in the training
dataset RoleCS. Experiments show that fine-tuning strong LLMs on RoleCS
significantly improves their ability to generate high-quality, strategy-aligned
responses on CSConv. Human evaluations further confirm gains in problem
resolution. All code and data will be made publicly available at
https://github.com/aliyun/qwen-dianjin.