Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Creating uniquely human digital banking experiences at TD

C3 AI Stock Plunges After ‘Completely Unacceptable’ Q1 Sales – C3.ai (NYSE:AI)

Meta says its Llama AI models being used by banks, tech companies

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Hugging Face

Paper page – Efficient Machine Unlearning via Influence Approximation

By Advanced AI EditorAugust 2, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


The paper introduces the Influence Approximation Unlearning (IAU) algorithm, which leverages incremental learning principles to efficiently address the computational challenges of influence-based unlearning in machine learning models.

Due to growing privacy concerns, machine unlearning, which aims at enabling
machine learning models to “forget” specific training data, has received
increasing attention. Among existing methods, influence-based unlearning has
emerged as a prominent approach due to its ability to estimate the impact of
individual training samples on model parameters without retraining. However,
this approach suffers from prohibitive computational overhead arising from the
necessity to compute the Hessian matrix and its inverse across all training
samples and parameters, rendering it impractical for large-scale models and
scenarios involving frequent data deletion requests. This highlights the
difficulty of forgetting. Inspired by cognitive science, which suggests that
memorizing is easier than forgetting, this paper establishes a theoretical link
between memorizing (incremental learning) and forgetting (unlearning). This
connection allows machine unlearning to be addressed from the perspective of
incremental learning. Unlike the time-consuming Hessian computations in
unlearning (forgetting), incremental learning (memorizing) typically relies on
more efficient gradient optimization, which supports the aforementioned
cognitive theory. Based on this connection, we introduce the Influence
Approximation Unlearning (IAU) algorithm for efficient machine unlearning from
the incremental perspective. Extensive empirical evaluations demonstrate that
IAU achieves a superior balance among removal guarantee, unlearning efficiency,
and comparable model utility, while outperforming state-of-the-art methods
across diverse datasets and model architectures. Our code is available at
https://github.com/Lolo1222/IAU.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleEndless Announces Stability AI Integration to Accelerate Decentralized AI
Next Article Perplexity AI Predicts XRP, Shiba Inu, Pepe Prices by 2025
Advanced AI Editor
  • Website

Related Posts

Paper page – Can Large Multimodal Models Actively Recognize Faulty Inputs? A Systematic Evaluation Framework of Their Input Scrutiny Ability

August 9, 2025

Paper page – Evaluating, Synthesizing, and Enhancing for Customer Support Conversation

August 9, 2025

Paper page – Hop, Skip, and Overthink: Diagnosing Why Reasoning Models Fumble during Multi-Hop Analysis

August 9, 2025

Comments are closed.

Latest Posts

Midjourney Slams Lawsuit Filed by Disney to Prevent AI Training

Smithsonian Updates Museum Display on Impeachment To Include Trump

Funder Tried to Hijack Kandinsky Art Theft Suits, Says Collector

How to Stylize Your Images with Flux Kontext in ComfyUI

Latest Posts

Creating uniquely human digital banking experiences at TD

August 12, 2025

C3 AI Stock Plunges After ‘Completely Unacceptable’ Q1 Sales – C3.ai (NYSE:AI)

August 12, 2025

Meta says its Llama AI models being used by banks, tech companies

August 12, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Creating uniquely human digital banking experiences at TD
  • C3 AI Stock Plunges After ‘Completely Unacceptable’ Q1 Sales – C3.ai (NYSE:AI)
  • Meta says its Llama AI models being used by banks, tech companies
  • Where Can I Buy Kratom Near Me? Mit Therapy’s Tips For Smart Purchases
  • Study warns of security risks as ‘OS agents’ gain control of computers and phones

Recent Comments

  1. ThomasWep on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. EdwardEnror on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. ThomasWep on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. Αναφορ Binance on OM1’s PhenOM® Foundation AI Surpasses One Billion Years of Health History in Model Training
  5. ThomasWep on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.