arXiv:2505.23990v1 Announce Type: new
Abstract: To effectively engage in human society, the ability to adapt, filter information, and make informed decisions in ever-changing situations is critical. As robots and intelligent agents become more integrated into human life, there is a growing opportunity-and need-to offload the cognitive burden on humans to these systems, particularly in dynamic, information-rich scenarios.
To fill this critical need, we present Multi-RAG, a multimodal retrieval-augmented generation system designed to provide adaptive assistance to humans in information-intensive circumstances. Our system aims to improve situational understanding and reduce cognitive load by integrating and reasoning over multi-source information streams, including video, audio, and text. As an enabling step toward long-term human-robot partnerships, Multi-RAG explores how multimodal information understanding can serve as a foundation for adaptive robotic assistance in dynamic, human-centered situations. To evaluate its capability in a realistic human-assistance proxy task, we benchmarked Multi-RAG on the MMBench-Video dataset, a challenging multimodal video understanding benchmark. Our system achieves superior performance compared to existing open-source video large language models (Video-LLMs) and large vision-language models (LVLMs), while utilizing fewer resources and less input data. The results demonstrate Multi- RAG’s potential as a practical and efficient foundation for future human-robot adaptive assistance systems in dynamic, real-world contexts.
Source link