Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Layoffs Affect the Labor Market

Use generative AI in Amazon Bedrock for enhanced recommendation generation in equipment maintenance

IBM and Researchers Are Now Closer to Practical Quantum Computers

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
MIT News

MIT’s 3-in-1 training tool eases robot learning

By Advanced AI EditorJuly 21, 2025No Comments7 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Teaching a robot new skills used to require coding expertise. But a new generation of robots could potentially learn from just about anyone.

Engineers are designing robotic helpers that can “learn from demonstration.” This more natural training strategy enables a person to lead a robot through a task, typically in one of three ways: via remote control, such as operating a joystick to remotely maneuver a robot; by physically moving the robot through the motions; or by performing the task themselves while the robot watches and mimics.

Learning-by-doing robots usually train in just one of these three demonstration approaches. But engineers at the Massachusetts Institute of Technology (MIT) have now developed a three-in-one training interface that allows a robot to learn a task through any of the three training methods. The interface is in the form of a handheld, sensor-equipped tool that can attach to many common collaborative robotic arms. A person can use the attachment to teach a robot to carry out a task by remotely controlling the robot, physically manipulating it, or demonstrating the task themselves — whichever style they prefer or best suits the task at hand.

The MIT team tested the new tool, which they call a “versatile demonstration interface,” on a standard collaborative robotic arm. Volunteers with manufacturing expertise used the interface to perform two manual tasks that are commonly carried out on factory floors.

The researchers say the new interface offers increased training flexibility that could expand the type of users and “teachers” who interact with robots. It may also enable robots to learn a wider set of skills. For instance, a person could remotely train a robot to handle toxic substances, while further down the production line another person could physically move the robot through the motions of boxing up a product, and at the end of the line, someone else could use the attachment to draw a company logo as the robot watches and learns to do the same.

“We are trying to create highly intelligent and skilled teammates that can effectively work with humans to get complex work done,” said Mike Hagenow, a postdoc at MIT in the Department of Aeronautics and Astronautics. “We believe flexible demonstration tools can help far beyond the manufacturing floor, in other domains where we hope to see increased robot adoption, such as home or caregiving settings.”

Hagenow will present a paper detailing the new interface, at the IEEE Intelligent Robots and Systems (IROS) conference in October. The paper’s MIT co-authors are Dimosthenis Kontogiorgos, a postdoc at the MIT Computer Science and Artificial Intelligence Lab (CSAIL); Yanwei Wang PhD ’25, who recently earned a doctorate in electrical engineering and computer science; and Julie Shah, MIT professor and head of the Department of Aeronautics and Astronautics.

MIT's new versatile demonstration interface is a handheld device to help teach robots new skills.

The handheld device developed by MIT that can be used to teach a robot new skills. | Credit: MIT

Training together

Shah’s group at MIT designs robots that can work alongside humans in the workplace, in hospitals, and at home. A main focus of her research is developing systems that enable people to teach robots new tasks or skills “on the job,” as it were. Such systems would, for instance, help a factory floor worker quickly and naturally adjust a robot’s maneuvers to improve its task in the moment, rather than pausing to reprogram the robot’s software from scratch — a skill that a worker may not necessarily have.

The team’s new work builds on an emerging strategy in robot learning called “learning from demonstration,” or LfD, in which robots are designed to be trained in more natural, intuitive ways. In looking through the LfD literature, Hagenow and Shah found LfD training methods developed so far fall generally into the three main categories of teleoperation, kinesthetic training, and natural teaching.

One training method may work better than the other two for a particular person or task. Shah and Hagenow wondered whether they could design a tool that combines all three methods to enable a robot to learn more tasks from more people.

“If we could bring together these three different ways someone might want to interact with a robot, it may bring benefits for different tasks and different people,” Hagenow said.

an image showing a person teaching a robot a new skill using three different methods.

MIT developed a handheld interface that enables you to teach a robot new skills, using any of three training approaches: natural teaching (top left), kinesthetic training (middle), and teleoperation. | Credit: MIT

Tasks at hand

With that goal in mind, the team engineered a new versatile demonstration interface (VDI). The interface is a handheld attachment that can fit onto the arm of a typical collaborative robotic arm. The attachment is equipped with a camera and markers that track the tool’s position and movements over time, along with force sensors to measure the amount of pressure applied during a given task.

When the interface is attached to a robot, the entire robot can be controlled remotely, and the interface’s camera records the robot’s movements, which the robot can use as training data to learn the task on its own. Similarly, a person can physically move the robot through a task, with the interface attached. The VDI can also be detached and physically held by a person to perform the desired task. The camera records the VDI’s motions, which the robot can also use to mimic the task when the VBI is reattached.

To test the attachment’s usability, the team brought the interface, along with a collaborative robotic arm, to a local innovation center where manufacturing experts learn about and test technology that can improve factory-floor processes. The researchers set up an experiment where they asked volunteers at the center to use the robot and all three of the interface’s training methods to complete two common manufacturing tasks: press-fitting and molding. In press-fitting, the user trained the robot to press and fit pegs into holes, similar to many fastening tasks. For molding, a volunteer trained the robot to push and roll a rubbery, dough-like substance evenly around the surface of a center rod, similar to some thermomolding tasks.

For each of the two tasks, the volunteers were asked to use each of the three training methods, first teleoperating the robot using a joystick, then kinesthetically manipulating the robot, and finally, detaching the robot’s attachment and using it to “naturally” perform the task as the robot recorded the attachment’s force and movements.

The researchers found the volunteers generally preferred the natural method over teleoperation and kinesthetic training. The users, who were all experts in manufacturing, did offer scenarios in which each method might have advantages over the others. Teleoperation, for instance, may be preferable in training a robot to handle hazardous or toxic substances. Kinesthetic training could help workers adjust the positioning of a robot that is tasked with moving heavy packages. And natural teaching could be beneficial in demonstrating tasks that involve delicate and precise maneuvers.

“We imagine using our demonstration interface in flexible manufacturing environments where one robot might assist across a range of tasks that benefit from specific types of demonstrations,” said Hagenow, who plans to refine the attachment’s design based on user feedback and will use the new design to test robot learning. “We view this study as demonstrating how greater flexibility in collaborative robots can be achieved through interfaces that expand the ways that end-users interact with robots during teaching.”

Editor’s Note: This article was republished from MIT News.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleGemini Deep Think learns math, wins gold medal at International Math Olympiad
Next Article IBM launches Global Entrance Test for postgraduate programmes in top universities
Advanced AI Editor
  • Website

Related Posts

Urmilatai Karad Auditorium Inaugurated At MIT-ADT, Honouring Legacy Of Sacrifice

July 21, 2025

Shaping India’s Future With Holistic Education & Innovation

July 21, 2025

New MIT technology grows more nutritious fruits and vegetables

July 19, 2025

Comments are closed.

Latest Posts

Nonprofit Files Case Accusing Russia of Plundering Ukrainian Culture

Artist Raymond Saunders Dies at 90

Famous $6.2 M. Banana from Maurizio Cattelan’s ‘Comedian’ Eaten Again

Fine Arts Museums of San Francisco Lay Off 12 Staff

Latest Posts

Layoffs Affect the Labor Market

July 21, 2025

Use generative AI in Amazon Bedrock for enhanced recommendation generation in equipment maintenance

July 21, 2025

IBM and Researchers Are Now Closer to Practical Quantum Computers

July 21, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Layoffs Affect the Labor Market
  • Use generative AI in Amazon Bedrock for enhanced recommendation generation in equipment maintenance
  • IBM and Researchers Are Now Closer to Practical Quantum Computers
  • A ChatGPT ‘router’ that automatically selects the right OpenAI model for your job appears imminent
  • 72% of US teens have used AI companions, study finds

Recent Comments

  1. fpmarkGoods on How Cursor and Claude Are Developing AI Coding Tools Together
  2. avenue17 on Local gov’t reps say they look forward to working with Thomas
  3. Lucky Star on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  4. микрокредит on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  5. www.binance.com注册 on MGX, Bpifrance, Nvidia, and Mistral AI plan 1.4GW Paris data center campus

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.