Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

[2501.19328] Capturing Temporal Dynamics in Large-Scale Canopy Tree Height Estimation

Stanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation

New MIT CSAIL study suggests that AI won’t steal as many jobs as expected

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » Learning Rate Grafting: Transferability of Optimizer Tuning (Machine Learning Research Paper Review)
Yannic Kilcher

Learning Rate Grafting: Transferability of Optimizer Tuning (Machine Learning Research Paper Review)

Advanced AI BotBy Advanced AI BotApril 26, 2025No Comments3 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email



#grafting #adam #sgd

The last years in deep learning research have given rise to a plethora of different optimization algorithms, such as SGD, AdaGrad, Adam, LARS, LAMB, etc. which all claim to have their special peculiarities and advantages. In general, all algorithms modify two major things: The (implicit) learning rate schedule, and a correction to the gradient direction. This paper introduces grafting, which allows to transfer the induced learning rate schedule of one optimizer to another one. In that, the paper shows that much of the benefits of adaptive methods (e.g. Adam) are actually due to this schedule, and not necessarily to the gradient direction correction. Grafting allows for more fundamental research into differences and commonalities between optimizers, and a derived version of it makes it possible to computes static learning rate corrections for SGD, which potentially allows for large savings of GPU memory.

OUTLINE
0:00 – Rant about Reviewer #2
6:25 – Intro & Overview
12:25 – Adaptive Optimization Methods
20:15 – Grafting Algorithm
26:45 – Experimental Results
31:35 – Static Transfer of Learning Rate Ratios
35:25 – Conclusion & Discussion

Paper (OpenReview):
Old Paper (Arxiv):

Our Discord:

Abstract:
In the empirical science of training large neural networks, the learning rate schedule is a notoriously challenging-to-tune hyperparameter, which can depend on all other properties (architecture, optimizer, batch size, dataset, regularization, …) of the problem. In this work, we probe the entanglements between the optimizer and the learning rate schedule. We propose the technique of optimizer grafting, which allows for the transfer of the overall implicit step size schedule from a tuned optimizer to a new optimizer, preserving empirical performance. This provides a robust plug-and-play baseline for optimizer comparisons, leading to reductions to the computational cost of optimizer hyperparameter search. Using grafting, we discover a non-adaptive learning rate correction to SGD which allows it to train a BERT model to state-of-the-art performance. Besides providing a resource-saving tool for practitioners, the invariances discovered via grafting shed light on the successes and failure modes of optimizers in deep learning.

Authors: Anonymous (Under Review)

Links:
TabNine Code Completion (Referral):
YouTube:
Twitter:
Discord:
BitChute:
LinkedIn:
BiliBili:

If you want to support me, the best thing to do is to share out the content 🙂

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar:
Patreon:
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

source

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleOpenAI’s GPT-4: Next Level AI Assistant!
Next Article Top 12 countries investing the most in AI
Advanced AI Bot
  • Website

Related Posts

Yannic Kilcher Live Stream

May 27, 2025

Imagination-Augmented Agents for Deep Reinforcement Learning

May 27, 2025

Learning model-based planning from scratch

May 27, 2025
Leave A Reply Cancel Reply

Latest Posts

Post-Minimalist Sculptor Dies at 83

Roger Director’s New Novel Is Killing In Havana

Zegna’s SS ‘26 Dubai Show Is A Vision For A Slow, Quiet Luxury Legacy

Love At First Stitch – One Woman’s Journey Preserving The Art Of Ralli

Latest Posts

[2501.19328] Capturing Temporal Dynamics in Large-Scale Canopy Tree Height Estimation

June 16, 2025

Stanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation

June 16, 2025

New MIT CSAIL study suggests that AI won’t steal as many jobs as expected

June 16, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.