Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

AI disruption rises, VC optimism cools in H1 2025

Anthropic appoints a national security expert to its governing trust

OpenAI GPT-2: An Almost Too Good Text Generator!

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » Introducing KBLaM: Bringing plug-and-play external knowledge to LLMs
Microsoft Research

Introducing KBLaM: Bringing plug-and-play external knowledge to LLMs

Advanced AI BotBy Advanced AI BotMarch 30, 2025No Comments7 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


KBLaM blog | A flowchart illustrating the process of handling a prompt using a language model. The process begins with documents being used to construct and summarize a knowledge base (KB) offline. The summarized KB is then encoded and fed into the main process. A prompt goes through a tokenizer, followed by rectangular attention, and then into the large language model (LLM). The LLM retrieves information from the encoded KB to generate an answer.

Large language models (LLMs) have demonstrated remarkable capabilities in reasoning, language understanding, and even creative tasks. Yet, a key challenge persists: how to efficiently integrate external knowledge.

Traditional methods such as fine-tuning and Retrieval-Augmented Generation (RAG) come with trade-offs—fine-tuning demands costly retraining, while RAG introduces separate retrieval modules that increase complexity and prevent seamless, end-to-end training. In-context learning, on the other hand, becomes increasingly inefficient as knowledge bases grow, facing quadratic computational scaling that hinders its ability to handle large repositories. A comparison of these approaches can be seen in Figure 1.

A new way to integrate knowledge

To address these challenges, we introduce the Knowledge Base-Augmented Language Model (KBLaM) —a novel approach that integrates structured knowledge bases into pre-trained LLMs. Instead of relying on external retrieval modules or costly fine-tuning, KBLaM encodes knowledge into continuous key-value vector pairs, efficiently embedding them within the model’s attention layers using a specialized rectangular attention mechanism, which implicitly performs retrieval in an integrated manner.

We use structured knowledge bases to represent the data, allowing us to consolidate knowledge and leverage structure. This design allows it to scale linearly with the size of the knowledge base while maintaining dynamic updates without retraining, making it far more efficient than existing methods.

Microsoft research blog

PromptWizard: The future of prompt optimization through feedback-driven self-evolving prompts

PromptWizard from Microsoft Research is now open source. It is designed to automate and simplify AI prompt optimization, combining iterative LLM feedback with efficient exploration and refinement techniques to create highly effective prompts in minutes.

Opens in a new tab

Scalable, efficient, and future-ready

At its core, KBLaM is designed to integrate structured knowledge into LLMs, making them more efficient and scalable. It achieves this by converting external knowledge bases—collections of facts structured as triples consisting of an entity, a property, and a value—into a format that LLMs can process naturally.  Such knowledge bases allow for consolidated, reliable sources of knowledge.

To create these knowledge bases, we first extract structured data in JSON format using small language models. We then apply Project Alexandria’s probabilistic clustering. Once we have this structured knowledge base, KBLaM follows a three-step pipeline:

Knowledge Encoding: Each knowledge triple is mapped into a key-value vector pair using a pre-trained sentence encoder with lightweight linear adapters. The key vector, derived from the entity name and property, encodes “index information,” while the value vector captures the corresponding property value. This allows us to create continuous, learnable key-value representations.

Integration with LLMs: These key-value pairs, or knowledge tokens, are augmented into the model’s attention layers using a specialized rectangular attention structure. Unlike traditional transformer models that process all tokens equally and come with quadratic cost—such as GPT-4, Phi, and Llama—rectangular attention enables the model to attend over knowledge with linear cost, as illustrated in Figure 2. Compared to standard attention mechanisms in generative language models, where each token attends to all preceding tokens, our approach introduces a more efficient structure. In this setup, language tokens (such as those from a user’s question) attend to all knowledge tokens. However, knowledge tokens do not attend to one another, nor do they attend back to the language tokens. This selective attention pattern significantly reduces computational cost while preserving the model’s ability to incorporate external knowledge effectively.

This linear cost, which is crucial for the efficiency of KBLaM, effectively amounts to treating each fact independently—an assumption that holds for most facts. For example, the model’s name, KBLaM, and the fact that the research was conducted at Microsoft Research are very weakly correlated. This rectangular attention is implemented as an extension of standard attention. During training, we keep the base model’s weights frozen, ensuring that when no knowledge tokens are provided, the model functions exactly as it did originally.

Efficient Knowledge Retrieval: Through this rectangular attention, the model learns to dynamically retrieve relevant knowledge tokens during inference, eliminating the need for separate retrieval steps.

Figure 1: A diagram comparing KBLaM and existing approaches. With RAG, we take the user’s prompt and use that to retrieve relevant documents from an external corpus using some retriever module, and append a tokenized version of those relevant documents in the context. This is relatively cheap, but requires many components. On the other hand, In Context Learning just puts the entire corpus into the context. This is simple, involving only one component, but is expensive. Our method, KBLaM, makes a structured knowledge base from the documents in an offline process, and includes the entire knowledge base to the context, while using a novel variant of attention, rectangular attention, so that the cost is linear in the size of the knowledge base. This results in a system where the retrieval only requires a single, trainable component, that is also cheap.
Figure 1: KBLaM allows for attention over the entire knowledge base instead of having an external retriever.
Figure 2: A diagram illustrating rectangular attention. Unlike regular attention, the attention matrix is not square, as we remove the parts where the knowledge base would attend over itself. This allows for KBLaM to scale linearly with the number of items in its context.
Figure 2: By having the user’s question attend to the knowledge base, while treating facts in the knowledge base independently, KBLaM scales efficiently and linearly with the size of the knowledge base.

Unlike RAG, which appends retrieved document chunks to prompts, KBLaM allows for direct integration of knowledge into the model. Compared to in-context learning,  KBLaM’s rectangular attention maintains a linear memory footprint, making it vastly more scalable for large knowledge bases. 

Its efficiency is a game-changer. While traditional in-context learning methods struggle with quadratic memory growth due to self-attention overhead, KBLaM’s linear overhead means we can store much more knowledge in the context. In practice, this means KBLaM can store and process over 10,000 knowledge triples, the equivalent of approximately 200,000 text tokens on a single GPU—a feat that would be computationally prohibitive with conventional in-context learning. The results across a wide range of triples and can be seen in Figure 3. Remarkably, it achieves this while extending a base model that has a context length of only 8K tokens. Additionally, KBLaM enables dynamic updates: modifying a single knowledge triple does not require retraining or re-computation of the entire knowledge base. 

Figure 3: Two graphs, showing time to first token, and memory usage for both KBLaM and RAG. KBLaM’s time to first token remains relatively constant across a large range of knowledge base sizes, with the time-to-first-token with 4096 triples in the context being lower than that of conventional RAG with 5 triples in the context. The memory usage is also much lower, with KBLaM with 512 triples having a similar memory usage to RAG at 5 triples.
Figure 3: KBLaM is much faster and uses much less memory than adding the equivalent number of triples in the context using conventional RAG-like approaches. In particular, we have lower time to first token with 4,096 tripes in the context with KBLaM than we would with 5 triples in the context.

Enhancing interpretability and reliability

Another major benefit of KBLaM is its interpretability. Unlike in-context learning, where knowledge injection is opaque, KBLAM’s attention weights provide clear insights into how the model utilizes knowledge tokens. Experiments show that KBLaM assigns high attention scores to relevant knowledge triples, effectively mimicking a soft retrieval process.

Furthermore, KBLaM enhances model reliability by learning through its training examples when not to answer a question if the necessary information is missing from the knowledge base. In particular, with knowledge bases larger than approximately 200 triples, we found that the model refuses to answer questions it has no knowledge about more precisely than a model given the information as text in context. This feature helps reduce hallucinations, a common problem in LLMs that rely on internal knowledge alone, making responses more accurate and trustworthy.

The future of knowledge-augmented AI

KBLaM represents a major step forward in integrating structured knowledge into LLMs. By offering a scalable, efficient, and interpretable alternative to existing techniques, it paves the way for AI systems that can stay up to date and provide reliable, knowledge-driven responses. In fields where accuracy and trust are critical—such as medicine, finance, and scientific research—this approach has the potential to transform how language models interact with real-world information.

As AI systems increasingly rely on dynamic knowledge rather than static model parameters, we hope KBLaM will serve as a bridge between raw computational power and real-world understanding.

However, there is still work to be done before it can be deployed at scale. Our current model has been trained primarily on factual question-answer pairs, and further research is needed to expand its capabilities across more complex reasoning tasks and diverse knowledge domains.

To accelerate progress, we are releasing KBLaM’s code and datasets (opens in new tab) to the research community, and we are planning integrations with the Hugging Face transformers library. By making these resources available, we hope to inspire further research and adoption of scalable, efficient knowledge augmentation for LLMs. The future of AI isn’t just about generating text—it’s about generating knowledge that is accurate, adaptable, and deeply integrated with the evolving world. KBLaM is a step in that direction.

Opens in a new tab



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleA Case Study with the StrongREJECT Benchmark – The Berkeley Artificial Intelligence Research Blog
Next Article AI-equipped drones study dolphins on the edge of extinction
Advanced AI Bot
  • Website

Related Posts

BenchmarkQED: Automated benchmarking of RAG systems – Microsoft Research

June 5, 2025

What AI’s impact on individuals means for the health workforce and industry

May 29, 2025

FrodoKEM: A conservative quantum-safe cryptographic algorithm

May 27, 2025
Leave A Reply Cancel Reply

Latest Posts

Original Prototype for Jane Birkin’s Hermes Bag Consigned to Sotheby’s

Viral Trump Vs. Musk Feud Ignites A Meme Chain Reaction

UK Art Dealer Sentenced To 2.5 Years In Jail For Selling Art to Suspected Hezbollah Financier

Artists Accuse Dealer Reco Sturgis of Withholding Payments and Artworks

Latest Posts

AI disruption rises, VC optimism cools in H1 2025

June 7, 2025

Anthropic appoints a national security expert to its governing trust

June 7, 2025

OpenAI GPT-2: An Almost Too Good Text Generator!

June 7, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.