Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Making Sense Of AI’s Moment 

How Tesla’s (TSLA) Robotaxi, AI Deals and U.K. Energy Push Could Shape Software Revenue Growth

A Look at YouTube Short AI and AI Video Generation

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
IBM

IBM and NASA Develop a Digital Twin of the Sun to Predict Future Solar Storms

By Advanced AI EditorAugust 25, 2025No Comments4 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


The Sun’s most complex mysteries could soon be solved thanks to artificial intelligence. On August 20, IBM and NASA announced the launch of Surya, a foundation model for the sun. Having been trained on large datasets of solar activity, this AI tool aims to deepen humanity’s understanding of solar weather and accurately predict solar flares—bursts of electromagnetic radiation emitted by our star that threaten both astronauts in orbit and communications infrastructure on Earth.

Surya was trained with nine years of data collected by NASA’s Solar Dynamics Observatory (SDO), an instrument that has orbited the sun since 2010, taking high-resolution images every 12 seconds. The SDO captures observations of the sun at various different electromagnetic wavelengths to estimate the temperature of the star’s layers. It also takes precise measurements of the sun’s magnetic field—essential data for understanding how energy moves through the star, and for predicting solar storms.

Historically, interpreting this vast amount of diverse and complex data has been a challenge for heliophysicists. To address this challenge, IBM says that Surya’s developers used the SDO data to create a digital twin of the sun—a dynamic virtual replica of the star that is updated when new data is captured, and which can be manipulated and more easily studied.

The process began with unifying the various data formats fed into the model, allowing it to process them consistently. Next, a long-range vision transformer was employed—AI architecture that enables detailed analysis of very high-resolution images and the identification of relationships between their components, regardless of their distance.

The model’s performance was optimized using a mechanism called spectral gating, which reduces memory usage by up to 5 percent by filtering out noise in the data, thereby increasing the quality of the processed information.

More Accurate Predictions in Less Time

Its developers say that this design gives Surya a significant advantage: Unlike other algorithms that require extensive labeling of the data that’s fed to them, Surya can learn directly from raw data. This allows it to quickly adapt to different tasks and deliver reliable results in less time.

During testing, Surya demonstrated its versatility in integrating data from other instruments, such as the Parker Solar Probe and the Solar and Heliospheric Observatory (SOHO), two other spacecraft that observe the sun. Surya also proved to be effective in various predictive functions, including predicting flare activity and solar wind speed.

According to IBM, traditional prediction models can only predict a flare one hour in advance based on signals detected in specific regions of the sun. In contrast, “Surya provided a two-hour lead by using visual information. The model is thought to be the first to provide a warning of this kind. In early testing of the model, the team said they achieved a 16 percent improvement in solar flare classification accuracy, a marked improvement over existing methods,” the company said in a statement.

NASA stresses that, although the model was designed to study heliophysics, its architecture is adaptable to different fields, from planetary science to Earth observation. “By developing a foundation model trained on NASA’s heliophysics data, we’re making it easier to analyze the complexities of the sun’s behavior with unprecedented speed and precision,” said Kevin Murphy, NASA’s director of data science, in a statement. “This model empowers broader understanding of how solar activity impacts critical systems and technologies that we all rely on here on Earth.”

The risk posed by abnormal solar activity is not minor. A major solar storm could directly affect global telecommunications, collapse electrical grids, and disturb GPS navigation, satellite operations, internet connections, and radio transmissions.

Andrés Muñoz-Jaramillo, a solar physicist at the Southwest Research Institute in San Antonio, Texas, and lead scientist on the project, emphasized that Surya’s goal is to maximize the lead time for these possible scenarios. “We want to give Earth the longest lead time possible. Our hope is that the model has learned all the critical processes behind our star’s evolution through time so that we can extract actionable insights.”

This story originally appeared on WIRED en Español and has been translated from Spanish.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleTesla Partners with DeepSeek and ByteDance to Launch AI Voice Assistant in China
Next Article With AI chatbots, Big Tech is moving fast and breaking people
Advanced AI Editor
  • Website

Related Posts

Defence’s ERP bill with IBM hits $575m

August 24, 2025

Is IBM Attractively Priced After Recent 15% Share Price Pullback in 2025?

August 22, 2025

NASA and IBM Launch AI that Predicts Solar Activity

August 22, 2025

Comments are closed.

Latest Posts

Mütter Museum in Philadelphia Announces New Policy for Human Remains

Inigo Philbrick, Art Dealer Convicted of Fraud, Appears in BBC Film

Links for August 22, 2025

White House Targets Specific Artworks at Smithsonian Museums

Latest Posts

Making Sense Of AI’s Moment 

August 25, 2025

How Tesla’s (TSLA) Robotaxi, AI Deals and U.K. Energy Push Could Shape Software Revenue Growth

August 25, 2025

A Look at YouTube Short AI and AI Video Generation

August 25, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Making Sense Of AI’s Moment 
  • How Tesla’s (TSLA) Robotaxi, AI Deals and U.K. Energy Push Could Shape Software Revenue Growth
  • A Look at YouTube Short AI and AI Video Generation
  • Tesla Model Y L sold out for September 2025
  • InMind: Evaluating LLMs in Capturing and Applying Individual Human Reasoning Styles – Takara TLDR

Recent Comments

  1. JamesFug on Trump’s Tech Sanctions To Empower China, Betray America
  2. JamesFug on TEFAF New York Illuminates Art Week With Mastery Of Vivid, Radiant Color
  3. JamesFug on Jony Ive is building a futuristic AI device and OpenAI may acquire it
  4. BrentCes on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. JamesFug on Sam & Jony introduce io

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.