Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

C3 AI Stock Is Soaring Today: Here’s Why – C3.ai (NYSE:AI)

Nvidia Faces $8B Hit as U.S. Halts H20 AI Chip Exports to China

Paper page – Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » How VideoAmp uses Amazon Bedrock to power their media analytics interface
Amazon AWS AI

How VideoAmp uses Amazon Bedrock to power their media analytics interface

Advanced AI BotBy Advanced AI BotJune 12, 2025No Comments13 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


This post was co-written with Suzanne Willard and Makoto Uchida from VideoAmp.

In this post, we illustrate how VideoAmp, a media measurement company, worked with the AWS Generative AI Innovation Center (GenAIIC) team to develop a prototype of the VideoAmp Natural Language (NL) Analytics Chatbot to uncover meaningful insights at scale within media analytics data using Amazon Bedrock. The AI-powered analytics solution involved the following components:

A natural language to SQL pipeline, with a conversational interface, that works with complex queries and media analytics data from VideoAmp
An automated testing and evaluation tool for the pipeline

VideoAmp background

VideoAmp is a tech-first measurement company that empowers media agencies, brands, and publishers to precisely measure and optimize TV, streaming, and digital media. With a comprehensive suite of measurement, planning, and optimization solutions, VideoAmp offers clients a clear, actionable view of audiences and attribution across environments, enabling them to make smarter media decisions that help them drive better business outcomes. VideoAmp has seen incredible adoption for its measurement and currency solutions with 880% YoY growth, 98% coverage of the TV publisher landscape, 11 agency groups, and more than 1,000 advertisers. VideoAmp is headquartered in Los Angeles and New York with offices across the United States. To learn more, visit www.videoamp.com.

VideoAmp’s AI journey

VideoAmp has embraced AI to enhance its measurement and optimization capabilities. The company has integrated machine learning (ML) algorithms into its infrastructure to analyze vast amounts of viewership data across traditional TV, streaming, and digital services. This AI-driven approach allows VideoAmp to provide more accurate audience insights, improve cross-environment measurement, and optimize advertising campaigns in real time. By using AI, VideoAmp has been able to offer advertisers and media owners more precise targeting, better attribution models, and increased return on investment for their advertising spend. The company’s AI journey has positioned it as a leader in the evolving landscape of data-driven advertising and media measurement.

To take their innovations a step further, VideoAmp is building a brand-new analytics solution powered by generative AI, which will provide their customers with accessible business insights. Their goal for a beta product is to create a conversational AI assistant powered by large language models (LLMs) that allows VideoAmp’s data analysts and non-technical users such as content researchers and publishers to perform data analytics using natural language queries.

Use case overview

VideoAmp is undergoing a transformative journey by integrating generative AI into its analytics. The company aims to revolutionize how customers, including publishers, media agencies, and brands, interact with and derive insights from VideoAmp’s vast repository of data through a conversational AI assistant interface.

Presently, analysis by data scientists and analysts is done manually, requires technical SQL knowledge, and can be time-consuming for complex and high-dimensional datasets. Acknowledging the necessity for streamlined and accessible processes, VideoAmp worked with the GenAIIC to develop an AI assistant capable of comprehending natural language queries, generating and executing SQL queries on VideoAmp’s data warehouse, and delivering natural language summaries of retrieved information. The assistant allows non-technical users to surface data-driven insights, and it reduces research and analysis time for both technical and non-technical users.

Key success criteria for the project included:

The ability to convert natural language questions into SQL statements, connect to VideoAmp’s provided database, execute statements on VideoAmp performance metrics data, and create a natural language summary of results
A UI to ask natural language questions and view assistant output, which includes generated SQL queries, reasoning for the SQL statements, retrieved data, and natural language data summaries
Conversational support for the user to iteratively refine and filter asked questions
Low latency and cost-effectiveness
An automated evaluation pipeline to assess the quality and accuracy of the assistant

The team overcame a few challenges during the development process:

Adapting LLMs to understand the domain aspects of VideoAmp’s dataset – The dataset included highly industry-specific fields and metrics, and required complex queries to effectively filter and analyze. The queries often involved multiple specialized metric calculations, filters selecting from over 30 values, and extensive grouping and ordering.
Developing an automated evaluation pipeline – The pipeline is able to correctly identify if generated outputs are equivalent to ground truth data, even if they have different column aliasing, ordering, and metric calculations.

Solution overview

The GenAIIC team worked with VideoAmp to create an AI assistant that used Anthropic’s Claude 3 LLMs through Amazon Bedrock. Amazon Bedrock was chosen for this project because it provides access to high-quality foundation models (FMs), including Anthropic’s Claude 3 series, through a unified API. This allowed the team to quickly integrate the most suitable models for different components of the solution, such as SQL generation and data summarization.

Additional features in Amazon Bedrock, including Amazon Bedrock Prompt Management, native support for Retrieval Augmented Generation (RAG) and structured data retrieval through Amazon Bedrock Knowledge Bases, Amazon Bedrock Guardrails, and fine-tuning, enable VideoAmp to quickly expand the analytics solution and take it to production. Amazon Bedrock also offers robust security and adheres to compliance certifications, allowing VideoAmp to confidently expand their AI analytics solution while maintaining data privacy and adhering to industry standards.

The solution is connected to a data warehouse. It supports a variety of database connections, such as Snowflake, SingleStore, PostgreSQL, Excel and CSV files, and more. The following diagram illustrates the high-level workflow of the solution.

A diagram illustrating the high-level workflow of VideoAmp's Natural Language Analytics solution

The workflow consists of the following steps:

The user navigates to the frontend application and asks a question in natural language.
A Question Rewriter LLM component uses previous conversational context to augment the question with additional details if applicable. This allows follow-up questions and refinements to previous questions.
A Text-to-SQL LLM component creates a SQL query that corresponds to the user question.
The SQL query is executed in the data warehouse.
A Data-to-Text LLM component summarizes the retrieved data for the user.

The rewritten question, generated SQL, reasoning, and retrieved data are returned at each step.

AI assistant workflow details

In this section, we discuss the components of the AI assistant workflow in more detail.

Rewriter

After the user asks the question, the current question and the previous questions the user asked in the current session are sent to the Question Rewriter component, which uses Anthropic’s Claude 3 Sonnet model. If deemed necessary, the LLM uses context from the previous questions to augment the current user question to make it a standalone question with context included. This enables multi-turn conversational support for the user, allowing for natural interactions with the assistant.

For example, if a user first asked, “For the week of 09/04/2023 – 09/10/2023, what were the top 10 ranked original national broadcast shows based on viewership for households with 18+?”, followed by, “Can I have the same data for one year later”, the rewriter would rewrite the latter question as “For the week of 09/03/2024 – 09/09/2024, what were the top 10 ranked original national broadcast shows based on viewership for households with 18+?”

Text-to-SQL

The rewritten user question is sent to the Text-to-SQL component, which also uses Anthropic’s Claude 3 Sonnet model. The Text-to-SQL component uses information about the database in its prompt to generate a SQL query corresponding to the user question. It also generates an explanation of the query.

The text-to-SQL prompt addressed several challenges, such as industry-specific language in user questions, complex metrics, and several rules and defaults for filtering. The prompt was developed through several iterations, based on feedback and guidance from the VideoAmp team, and manual and automated evaluation.

The prompt consisted of four overarching sections: context, SQL instructions, task, and examples. During the development phase, database schema and domain- or task-specific knowledge were found to be critical, so one major part of the prompt was designed to incorporate them in the context. To make this solution reusable and scalable, a modularized design of the prompt/input system is employed, making it generic so it can be applied to other use cases and domains. The solution can support Q&A with multiple databases by dynamically switching/changing the corresponding context with an orchestrator if needed.

The context section contains the following details:

Database schema
Sample categories for relevant data fields such as television networks to aid the LLM in understanding what fields to use for identifiers in the question
Industry term definitions
How to calculate different types of metrics or aggregations
Default values or fields should be selected if not specified
Other domain- or task-specific knowledge

The SQL instructions contain the following details:

Dynamic insertion of today’s date as a reference for terms, such as “last 3 quarters”
Instructions on usage of sub-queries
Instructions on when to retrieve additional informational columns not specified in the user question
Known SQL syntax and database errors to avoid and potential fixes

In the task section, the LLM is given a detailed step-by-step process to formulate SQL queries based on the context. A step-by-step process is required for the LLM to correctly think through and assimilate the required context and rules. Without the step-by-step process, the team found that the LLM wouldn’t adhere to all instructions provided in the previous sections.

In the examples section, the LLM is given several examples of user questions, corresponding SQL statements, and explanations.

In addition to iterating on the prompt content, different content organization patterns were tested due to long context. The final prompt was organized with markdown and XML.

SQL execution

After the Text-to-SQL component outputs a query, the query is executed against VideoAmp’s data warehouse using database connector code. For this use case, only read queries for analytics are executed to protect the database from unexpected operations like updates or deletes. The credentials for the database are securely stored and accessed using AWS Secrets Manager and AWS Key Management Service (AWS KMS).

Data-to-Text

The data retrieved by the SQL query is sent to the Data-to-Text component, along with the rewritten user question. The Data-to-Text component, which uses Anthropic’s Claude 3 Haiku model, produces a concise summary of the retrieved data and answers the user question.

The final outputs are displayed on the frontend application as shown in the following screenshots (protected data is hidden).

A screenshot showing the outputs of the VideoAmp Natural Language Analytics solution

A screenshot showing the outputs of the VideoAmp Natural Language Analytics solution

Evaluation framework workflow details

The GenAIIC team developed a sophisticated automated evaluation pipeline for VideoAmp’s NL Analytics Chatbot, which directly informed prompt optimization and solution improvements and was a critical component in providing high-quality results.

The evaluation framework comprises of two categories:

SQL query evaluation – Generated SQL queries are evaluated for overall closeness to the ground truth SQL query. A key feature of the SQL evaluation component was the ability to account for column aliasing and ordering differences when comparing statements and determine equivalency.
Retrieved data evaluation – The retrieved data is compared to ground truth data to determine an exact match, after a few processing steps to account for column, formatting, and system differences.

The evaluation pipeline also produces detailed reports of the results and discrepancies between generated data and ground truth data.

Dataset

The dataset used for the prototype solution was hosted in a data warehouse and consisted of performance metrics data such as viewership, ratings, and rankings for television networks and programs. The field names were industry-specific, so a data dictionary was included in the text-to-SQL prompt as part of the schema. The credentials for the database are securely stored and accessed using Secrets Manager and AWS KMS.

Results

A set of test questions were evaluated by the GenAIIC and VideoAmp teams, focusing on three metrics:

Accuracy – Different accuracy metrics were analyzed, but exact matches between retrieved data and ground truth data were prioritized
Latency – LLM generation latency, excluding the time taken to query the database
Cost – Average cost per user question

Both the evaluation pipeline and human review reported high accuracies on the dataset, whereas costs and latencies remained low. Overall, the results were well-aligned with VideoAmp expectations. VideoAmp anticipates this solution will make it simple for users to handle complex data queries with confidence through intuitive natural language interactions, reducing the time to business insights.

Conclusion

In this post, we shared how the GenAIIC team worked with VideoAmp to build a prototype of the VideoAmp NL Analytics Chatbot, an end-to-end generative AI data analytics interface using Amazon Bedrock and Anthropic’s Claude 3 LLMs. The solution is equipped with a variety of state-of-the-art LLM-based techniques, such as question rewriting, text-to-SQL query generation, and summarization of data in natural language. It also includes an automated evaluation module for evaluating the correctness of generated SQL statements and retrieved data. The solution achieved high accuracy on VideoAmp’s evaluation samples. Users can interact with the solution through an intuitive AI assistant interface with conversational capabilities.

VideoAmp will soon be launching their new generative AI-powered analytics interface, which enables customers to analyze data and gain business insights through natural language conversation. Their successful work with the GenAIIC team will allow VideoAmp to use generative AI technology to swiftly deliver valuable insights for both technical and non-technical customers.

This is just one of the ways AWS enables builders to deliver generative AI-based solutions. You can get started with Amazon Bedrock and see how it can be integrated in example code bases. The GenAIIC is a group of science and strategy experts with comprehensive expertise spanning the generative AI journey, helping you prioritize use cases, build a roadmap, and move solutions into production. If you’re interested in working with the GenAIIC, reach out to them today.

About the authors

Suzanne Willard is the VP of Engineering at VideoAmp where she founded and leads the GenAI program, establishing the strategic vision and execution roadmap. With over 20 years experience she is driving innovation in AI technologies, creating transformative solutions that align with business objectives and set the company apart in the market.

Makoto Uchida is a senior architect at VideoAmp in the AI domain, acting as area technical lead of AI portfolio, responsible for defining and driving AI product and technical strategy in the content and ads measurement platform PaaS product. Previously, he was a software engineering lead in generative and predictive AI Platform at a major hyperscaler public Cloud service. He has also engaged with multiple startups, laying the foundation of Data/ML/AI infrastructures.

Shreya Mohanty is a Deep Learning Architect at the AWS Generative AI Innovation Center, where she partners with customers across industries to design and implement high-impact GenAI-powered solutions. She specializes in translating customer goals into tangible outcomes that drive measurable impact.

Long Chen is a Sr. Applied Scientist at AWS Generative AI Innovation Center. He holds a Ph.D. in Applied Physics from University of Michigan – Ann Arbor. With more than a decade of experience for research and development, he works on innovative solutions in various domains using generative AI and other machine learning techniques, ensuring the success of AWS customers. His interest includes generative models, multi-modal systems and graph learning.

Amaran Asokkumar is a Deep Learning Architect at AWS, specializing in infrastructure, automation, and AI. He leads the design of GenAI-enabled solutions across industry segments. Amaran is passionate about all things AI and helping customers accelerate their GenAI exploration and transformation efforts.

Vidya Sagar Ravipati is a Science Manager at the Generative AI Innovation Center, where he leverages his vast experience in large-scale distributed systems and his passion for machine learning to help AWS customers across different industry verticals accelerate their AI and cloud adoption.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleGetty Sues Stability AI Over Copyrighted Image Scraping
Next Article Paper page – SWE-Flow: Synthesizing Software Engineering Data in a Test-Driven Manner
Advanced AI Bot
  • Website

Related Posts

Build generative AI solutions with Amazon Bedrock

June 13, 2025

Accelerating Articul8’s domain-specific model development with Amazon SageMaker HyperPod

June 12, 2025

How Gardenia Technologies helps customers create ESG disclosure reports 75% faster using agentic generative AI on Amazon Bedrock

June 11, 2025
Leave A Reply Cancel Reply

Latest Posts

New York to Get New Space for Video, Sound, and Performance Art

Enchanting El Museo Del Barrio Gala Honors Late Artist And Arts Patron Tony Bechara

Wellness Design Is Booming—Rakxa In Bangkok Shows How To Bring It Home

Two Men Found Guilty for Forging and Selling Fake Royal Armchairs

Latest Posts

C3 AI Stock Is Soaring Today: Here’s Why – C3.ai (NYSE:AI)

June 13, 2025

Nvidia Faces $8B Hit as U.S. Halts H20 AI Chip Exports to China

June 13, 2025

Paper page – Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning

June 13, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.