Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

EU Commission: “AI Gigafactories” to strengthen Europe as a business location

United States, China, and United Kingdom Lead the Global AI Ranking According to Stanford HAI’s Global AI Vibrancy Tool

Apple’s Lack Of New AI Features At WWDC Is ‘Startling,’ Expert Says – Apple (NASDAQ:AAPL)

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » Helping machines understand visual content with AI | MIT News
AI Search

Helping machines understand visual content with AI | MIT News

Advanced AI BotBy Advanced AI BotJune 9, 2025No Comments6 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Data should drive every decision a modern business makes. But most businesses have a massive blind spot: They don’t know what’s happening in their visual data.

Coactive is working to change that. The company, founded by Cody Coleman ’13, MEng ’15 and William Gaviria Rojas ’13, has created an artificial intelligence-powered platform that can make sense of data like images, audio, and video to unlock new insights.

Coactive’s platform can instantly search, organize, and analyze unstructured visual content to help businesses make faster, better decisions.

“In the first big data revolution, businesses got better at getting value out of their structured data,” Coleman says, referring to data from tables and spreadsheets. “But now, approximately 80 to 90 percent of the data in the world is unstructured. In the next chapter of big data, companies will have to process data like images, video, and audio at scale, and AI is a key piece of unlocking that capability.”

Coactive is already working with several large media and retail companies to help them understand their visual content without relying on manual sorting and tagging. That’s helping them get the right content to users faster, remove explicit content from their platforms, and uncover how specific content influences user behavior.

More broadly, the founders believe Coactive serves as an example of how AI can empower humans to work more efficiently and solve new problems.

“The word coactive means to work together concurrently, and that’s our grand vision: helping humans and machines work together,” Coleman says. “We believe that vision is more important now than ever because AI can either pull us apart or bring us together. We want Coactive to be an agent that pulls us together and gives human beings a new set of superpowers.”

Giving computers vision

Coleman met Gaviria Rojas in the summer before their first yearthrough the MIT Interphase Edge program. Both would go on to major in electrical engineering and computer science and work on bringing MIT OpenCourseWare content to Mexican universities, among other projects.

“That was a great example of entrepreneurship,” Coleman recalls of the OpenCourseWare project. “It was really empowering to be responsible for the business and the software development. It led me to start my own small web-development businesses afterward, and to take [the MIT course] Founder’s Journey.”

Coleman first explored the power of AI at MIT while working as a graduate researcher with the Office of Digital Learning (now MIT Open Learning), where he used machine learning to study how humans learn on MITx, which hosts massive, open online courses created by MIT faculty and instructors.

“It was really amazing to me that you could democratize this transformational journey that I went through at MIT with digital learning — and that you could apply AI and machine learning to create adaptive systems that not only help us understand how humans learn, but also deliver more personalized learning experiences to people around the world,” Coleman says of MITx. “That was also the first time I got to explore video content and apply AI to it.”

After MIT, Coleman went to Stanford University for his PhD, where he worked on lowering barriers to using AI. The research led him to work with companies like Pinterest and Meta on AI and machine-learning applications.

“That’s where I was able to see around the corner into the future of what people wanted to do with AI and their content,” Coleman recalls. “I was seeing how leading companies were using AI to drive business value, and that’s where the initial spark for Coactive came from. I thought, ‘What if we create an enterprise-grade operating system for content and multimodal AI to make that easy?’”

Meanwhile, Gaviria Rojas moved to the Bay Area in 2020 and started working as a data scientist at eBay. As part of the move, he needed help transporting his couch, and Coleman was the lucky friend he called.

“On the car ride, we realized we both saw an explosion happening around data and AI,” Gaviria Rojas says. “At MIT, we got a front row seat to the big data revolution, and we saw people inventing technologies to unlock value from that data at scale. Cody and I realized we had another powder keg about to explode with enterprises collecting tremendous amount of data, but this time it was multimodal data like images, video, audio, and text. There was a missing technology to unlock it at scale. That was AI.”

The platform the founders went on to build — what Coleman describes as an “AI operating system” — is model agnostic, meaning the company can swap out the AI systems under the hood as models continue to improve. Coactive’s platform includes prebuilt applications that business customers can use to do things like search through their content, generate metadata, and conduct analytics to extract insights.

“Before AI, computers would see the world through bytes, whereas humans would see the world through vision,” Coleman says. “Now with AI, machines can finally see the world like we do, and that’s going to cause the digital and physical worlds to blur.”

Improving the human-computer interface

Reuters’ database of images supplies the world’s journalists with millions of photos. Before Coactive, the company relied on reporters manually entering tags with each photo so that the right images would show up when journalists searched for certain subjects.

“It was incredible slow and expensive to go through all of these raw assets, so people just didn’t add tags,” Coleman says. “That meant when you searched for things, there were limited results even if relevant photos were in the database.”

Now, when journalists on Reuters’ website select ‘Enable AI Search,’ Coactive can pull up relevant content based on its AI system’s understanding of the details in each image and video.

“It’s vastly improving the quality of results for reporters, which enables them to tell better, more accurate stories than ever before,” Coleman says.

Reuters is not alone in struggling to manage all of its content. Digital asset management is a huge component of many media and retail companies, who today often rely on manually entered metadata for sorting and searching through that content.

Another Coactive customer is Fandom, which is one of the world’s largest platforms for information around TV shows, videogames, and movies with more than 300 million monthly active users. Fandom is using Coactive to understand visual data in their online communities and help remove excessive gore and sexualized content.

“It used to take 24 to 48 hours for Fandom to review each new piece of content,” Coleman says. “Now with Coactive, they’ve codified their community guidelines and can generate finer-grain information in an average of about 500 milliseconds.”

With every use case, the founders see Coactive as enabling a new paradigm in the ways humans work with machines.

“Throughout the history of human-computer interaction, we’ve had to bend over a keyboard and mouse to input information in a way that machines could understand,” Coleman says. “Now, for the first time, we can just speak naturally, we can share images and video with AI, and it can understand that content. That’s a fundamental change in the way we think about human-computer interactions. The core vision of Coactive is because of that change, we need a new operating system and a new way of working with content and AI.”



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleAnthropic’s Claude plays ‘for peace over victory’ in a game of Diplomacy against other AI
Next Article Lawmakers Hear of Rewards, Risks of Government Use of AI
Advanced AI Bot
  • Website

Related Posts

CarGurus Launches AI-Powered Car Search With Conversational Technology

June 9, 2025

ChatGPT might eventually challenge Google Search, but the AI platform has a long way to go

June 9, 2025

Google searches for answer to rising threat from AI chatbots

June 8, 2025
Leave A Reply Cancel Reply

Latest Posts

Trust Overseeing Rivera and Kahlo Estates Accused of Mismanagement

Institute of Museum and Library Services Cuts Allowed as Lawsuits Proceed

‘Dissident-Right Art Hos’ US Pavilion Pitched for Venice Biennale

Timeless Luxury Menswear Accessories For Summer 2025

Latest Posts

EU Commission: “AI Gigafactories” to strengthen Europe as a business location

June 10, 2025

United States, China, and United Kingdom Lead the Global AI Ranking According to Stanford HAI’s Global AI Vibrancy Tool

June 10, 2025

Apple’s Lack Of New AI Features At WWDC Is ‘Startling,’ Expert Says – Apple (NASDAQ:AAPL)

June 10, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.