Leveraging visual priors from pre-trained text-to-image (T2I) generative
models has shown success in dense prediction. However, dense prediction is
inherently an image-to-image task, suggesting that image editing models, rather
than T2I generative models, may be a more suitable foundation for fine-tuning.
Motivated by this, we conduct a systematic analysis of the fine-tuning
behaviors of both editors and generators for dense geometry estimation. Our
findings show that editing models possess inherent structural priors, which
enable them to converge more stably by “refining” their innate features, and
ultimately achieve higher performance than their generative counterparts.
Based on these findings, we introduce \textbf{FE2E}, a framework that
pioneeringly adapts an advanced editing model based on Diffusion Transformer
(DiT) architecture for dense geometry prediction. Specifically, to tailor the
editor for this deterministic task, we reformulate the editor’s original flow
matching loss into the “consistent velocity” training objective. And we use
logarithmic quantization to resolve the precision conflict between the editor’s
native BFloat16 format and the high precision demand of our tasks.
Additionally, we leverage the DiT’s global attention for a cost-free joint
estimation of depth and normals in a single forward pass, enabling their
supervisory signals to mutually enhance each other.
Without scaling up the training data, FE2E achieves impressive performance
improvements in zero-shot monocular depth and normal estimation across multiple
datasets. Notably, it achieves over 35\% performance gains on the ETH3D dataset
and outperforms the DepthAnything series, which is trained on 100$\times$ data.
The project page can be accessed \href{https://amap-ml.github.io/FE2E/}{here}.