Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Perplexity AI Pro Review: Research with Real-Time Insights

Wexler Bags $5.3m – Interview With CEO, Gregory Mostyn – Artificial Lawyer

VideoFrom3D: 3D Scene Video Generation via Complementary Image and Video Diffusion Models – Takara TLDR

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
VentureBeat AI

From dot-com to dot-AI: How we can learn from the last tech transformation (and avoid making the same mistakes)

By Advanced AI EditorMay 18, 2025No Comments6 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More

At the height of the dot-com boom, adding “.com” to a company’s name was enough to send its stock price soaring — even if the business had no real customers, revenue or path to profitability. Today, history is repeating itself. Swap “.com” for “AI,” and the story sounds eerily familiar.

Companies are racing to sprinkle “AI” into their pitch decks, product descriptions and domain names, hoping to ride the hype. As reported by Domain Name Stat, registrations for “.ai” domains surged about 77.1% year-over-year in 2024, driven by startups and incumbents alike rushing to associate themselves with artificial intelligence — whether they have a true AI advantage or not.

The late 1990s made one thing clear: Using breakthrough technology isn’t enough. The companies that survived the dot-com crash weren’t chasing hype — they were solving real problems and scaling with purpose.

AI is no different. It will reshape industries, but the winners won’t be those slapping “AI” on a landing page — they’ll be the ones cutting through the hype and focusing on what matters.

The first steps? Start small, find your wedge and scale deliberately.

Start small: Find your wedge before you scale

One of the most costly mistakes of the dot-com era was trying to go big too soon — a lesson AI product builders today can’t afford to ignore.

Take eBay, for example. It began as a simple online auction site for collectibles — starting with something as niche as Pez dispensers. Early users loved it because it solved a very specific problem: It connected hobbyists who couldn’t find each other offline. Only after dominating that initial vertical did eBay expand into broader categories like electronics, fashion and, eventually, almost anything you can buy today.

Compare that to Webvan, another dot-com era startup with a much different strategy. Webvan aimed to revolutionize grocery shopping with online ordering and rapid home delivery — all at once, in multiple cities. It spent hundreds of millions of dollars building massive warehouses and complex delivery fleets before it had strong customer demand. When growth didn’t materialize fast enough, the company collapsed under its own weight.

The pattern is clear: Start with a sharp, specific user need. Focus on a narrow wedge you can dominate. Expand only when you have proof of strong demand.

For AI product builders, this means resisting the urge to build an “AI that does everything.” Take, for example, a generative AI tool for data analysis. Are you targeting product managers, designers or data scientists? Are you building for people who don’t know SQL, those with limited experience or seasoned analysts?

Each of those users has very different needs, workflows and expectations. Starting with a narrow, well-defined cohort — like technical project managers (PMs) with limited SQL experience who need quick insights to guide product decisions — allows you to deeply understand your user, fine-tune the experience and build something truly indispensable. From there, you can expand intentionally to adjacent personas or capabilities. In the race to build lasting gen AI products, the winners won’t be the ones who try to serve everyone at once — they’ll be the ones who start small, and serve someone incredibly well.

Own your data moat: Build compounding defensibility early

Starting small helps you find product-market fit. But once you gain traction, your next priority is to build defensibility — and in the world of gen AI, that means owning your data.

The companies that survived the dot-com boom didn’t just capture users — they captured proprietary data. Amazon, for example, didn’t stop at selling books. They tracked purchases and product views to improve recommendations, then used regional ordering data to optimize fulfillment. By analyzing buying patterns across cities and zip codes, they predicted demand, stocked warehouses smarter and streamlined shipping routes — laying the foundation for Prime’s two-day delivery, a key advantage competitors couldn’t match. None of it would have been possible without a data strategy baked into the product from day one.

Google followed a similar path. Every query, click and correction became training data to improve search results — and later, ads. They didn’t just build a search engine; they built a real-time feedback loop that constantly learned from users, creating a moat that made their results and targeting harder to beat.

The lesson for gen AI product builders is clear: Long-term advantage won’t come from simply having access to a powerful model — it will come from building proprietary data loops that improve their product over time.

Today, anyone with enough resources can fine-tune an open-source large language model (LLM) or pay to access an API. What’s much harder — and far more valuable — is gathering high-signal, real-world user interaction data that compounds over time.

If you’re building a gen AI product, you need to ask critical questions early:

What unique data will we capture as users interact with us?

How can we design feedback loops that continuously refine the product?

Is there domain-specific data we can collect (ethically and securely) that competitors won’t have?

Take Duolingo, for example. With GPT-4, they’ve gone beyond basic personalization. Features like “Explain My Answer” and AI role-play create richer user interactions — capturing not just answers, but how learners think and converse. Duolingo combines this data with their own AI to refine the experience, creating an advantage competitors can’t easily match.

In the gen AI era, data should be your compounding advantage. Companies that design their products to capture and learn from proprietary data will be the ones that survive and lead.

Conclusion: It’s a marathon, not a sprint

The dot-com era showed us that hype fades fast, but fundamentals endure. The gen AI boom is no different. The companies that thrive won’t be the ones chasing headlines — they’ll be the ones solving real problems, scaling with discipline and building real moats.

The future of AI will belong to builders who understand that it’s a marathon — and have the grit to run it.

Kailiang Fu is an AI product manager at Uber.

Daily insights on business use cases with VB Daily

If you want to impress your boss, VB Daily has you covered. We give you the inside scoop on what companies are doing with generative AI, from regulatory shifts to practical deployments, so you can share insights for maximum ROI.

Read our Privacy Policy

Thanks for subscribing. Check out more VB newsletters here.

An error occured.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleGrok says it’s ‘skeptical’ about Holocaust death toll, then blames ‘programming error’
Next Article 6 Leadership Habits To Thrive In Chaos, According To An IBM CEO Study
Advanced AI Editor
  • Website

Related Posts

Software is 40% of security budgets as CISOs shift to AI defense

August 30, 2025

How Intuit killed the chatbot crutch – and built an agentic AI playbook you can copy

August 29, 2025

Forget data labeling: Tencent’s R-Zero shows how LLMs can train themselves

August 29, 2025
Leave A Reply

Latest Posts

Court Rules ‘Gender Ideology’ Ban on Art Endowments Unconstitutional

Rural Danish Art Museum Acquires Painting By Artemisia Gentileschi

Dan Nadel Is Expanding American Art History, One Outlier at a Time

St. Patrick’s Cathedral Unveils Monumental Mural by Adam Cvijanovic

Latest Posts

Perplexity AI Pro Review: Research with Real-Time Insights

September 23, 2025

Wexler Bags $5.3m – Interview With CEO, Gregory Mostyn – Artificial Lawyer

September 23, 2025

VideoFrom3D: 3D Scene Video Generation via Complementary Image and Video Diffusion Models – Takara TLDR

September 23, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Perplexity AI Pro Review: Research with Real-Time Insights
  • Wexler Bags $5.3m – Interview With CEO, Gregory Mostyn – Artificial Lawyer
  • VideoFrom3D: 3D Scene Video Generation via Complementary Image and Video Diffusion Models – Takara TLDR
  • Google DeepMind Upgrades Frontier AI Safety Framework to Prevent Manipulation and Shutdown Risks_the_resist_risks
  • Who is Chet Kapoor? Steve Jobs’ intern, who sold his companies to IBM, Google – Trending News

Recent Comments

  1. MartinHoins on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. Brentelorm on Curiosity, Grit Matter More Than Ph.D to Work at OpenAI: ChatGPT Boss
  3. Hilyflthatt on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. Josephadoto on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. DavidWem on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.