Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

DeepSeek-R1: Hype cools as India seeks practical GenAI solutions

Google Docs gets AI voice reader, lets you turn your documents into audio with a click

Security experts warn against selling Nvidia AI chips to China

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Forethought AI

Five ways that AI is learning to improve itself

By Advanced AI EditorAugust 15, 2025No Comments4 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


That’s why Mirhoseini has been using AI to optimize AI chips. Back in 2021, she and her collaborators at Google built a non-LLM AI system that could decide where to place various components on a computer chip to optimize efficiency. While the work attracted skepticism from the chip design community, Mirhoseini says that Nature investigated the paper and upheld the work’s validity—and she notes that Google has used the system’s designs for multiple generations of its custom AI chips.

More recently, Mirhoseini has applied LLMs to the problem of writing kernels, low-level functions that control how various operations, like matrix multiplication, are carried out in chips. She’s found that even general-purpose LLMs can, in some cases, write kernels that run faster than the human-designed versions.

Elsewhere at Google, scientists built a system that they used to optimize various parts of the company’s LLM infrastructure. The system, called AlphaEvolve, prompts Google’s Gemini LLM to write algorithms for solving some problem, evaluates those algorithms, and asks Gemini to improve on the most successful—and repeats that process several times. AlphaEvolve designed a new approach for running datacenters that saved 0.7% of Google’s computational resources, made further improvements to Google’s custom chip design, and designed a new kernel that sped up Gemini’s training by 1%.   

That might sound like a small improvement, but at a huge company like Google it equates to enormous savings of time, money, and energy. And Matej Balog, a staff research scientist at Google DeepMind who led the AlphaEvolve project, says that he and his team tested the system on only a small component of Gemini’s overall training pipeline. Applying it more broadly, he says, could lead to more savings.

3. Automating training

LLMs are famously data hungry, and training them is costly at every stage. In some specific domains—unusual programming languages, for example—real-world data is too scarce to train LLMs effectively. Reinforcement learning with human feedback, a technique in which humans score LLM responses to prompts and the LLMs are then trained using those scores, has been key to creating models that behave in line with human standards and preferences, but obtaining human feedback is slow and expensive. 

Increasingly, LLMs are being used to fill in the gaps. If prompted with plenty of examples, LLMs can generate plausible synthetic data in domains in which they haven’t been trained, and that synthetic data can then be used for training. LLMs can also be used effectively for reinforcement learning: In an approach called “LLM as a judge,” LLMs, rather than humans, are used to score the outputs of models that are being trained. That approach is key to the influential “Constitutional AI” framework proposed by Anthropic researchers in 2022, in which one LLM is trained to be less harmful based on feedback from another LLM.

Data scarcity is a particularly acute problem for AI agents. Effective agents need to be able to carry out multistep plans to accomplish particular tasks, but examples of successful step-by-step task completion are scarce online, and using humans to generate new examples would be pricey. To overcome this limitation, Stanford’s Mirhoseini and her colleagues have recently piloted a technique in which an LLM agent generates a possible step-by-step approach to a given problem, an LLM judge evaluates whether each step is valid, and then a new LLM agent is trained on those steps. “You’re not limited by data anymore, because the model can just arbitrarily generate more and more experiences,” Mirhoseini says.

4. Perfecting agent design

One area where LLMs haven’t yet made major contributions is in the design of LLMs themselves. Today’s LLMs are all based on a neural-network structure called a transformer, which was proposed by human researchers in 2017, and the notable improvements that have since been made to the architecture were also human-designed. 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleDeepSeek R2 model release reportedly held back by faulty Huawei chips
Next Article Why a landmark ICJ ruling puts financial markets on notice
Advanced AI Editor
  • Website

Related Posts

Apple Knows AI Isn’t What People Really Want, but It Can’t Say That

June 24, 2025

Daily Research News Online no. 36669

June 7, 2025

Forethought CEO explains pitch deck that won Startup Battlefield

June 1, 2025

Comments are closed.

Latest Posts

Barbara Hepworth Sculpture Will Remain in UK After £3.8 M. Raised

After 12-Year Hiatus, Egypt’s Alexandria Biennale Will Return

Ai Weiwei Visits Ukraine’s Front Line Ahead of Kyiv Installation

Maren Hassinger to Receive Her Largest Retrospective to Date Next Year

Latest Posts

DeepSeek-R1: Hype cools as India seeks practical GenAI solutions

August 20, 2025

Google Docs gets AI voice reader, lets you turn your documents into audio with a click

August 20, 2025

Security experts warn against selling Nvidia AI chips to China

August 20, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • DeepSeek-R1: Hype cools as India seeks practical GenAI solutions
  • Google Docs gets AI voice reader, lets you turn your documents into audio with a click
  • Security experts warn against selling Nvidia AI chips to China
  • OpenAI’s Sam Altman sees AI bubble forming as industry spending surges
  • IBM Announces Registrations For Its Global Entrance Test

Recent Comments

  1. Jimmyjaito on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. SamuelCoatt on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. Jimmyjaito on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. wifofeFoste on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. Jimmyjaito on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.