Accurate diagnosis with medical large language models is hindered by
knowledge gaps and hallucinations. Retrieval and tool-augmented methods help,
but their impact is limited by weak use of external knowledge and poor
feedback-reasoning traceability. To address these challenges, We introduce
Deep-DxSearch, an agentic RAG system trained end-to-end with reinforcement
learning (RL) that enables steer tracebale retrieval-augmented reasoning for
medical diagnosis. In Deep-DxSearch, we first construct a large-scale medical
retrieval corpus comprising patient records and reliable medical knowledge
sources to support retrieval-aware reasoning across diagnostic scenarios. More
crutially, we frame the LLM as the core agent and the retrieval corpus as its
environment, using tailored rewards on format, retrieval, reasoning structure,
and diagnostic accuracy, thereby evolving the agentic RAG policy from
large-scale data through RL.
Experiments demonstrate that our end-to-end agentic RL training framework
consistently outperforms prompt-engineering and training-free RAG approaches
across multiple data centers. After training, Deep-DxSearch achieves
substantial gains in diagnostic accuracy, surpassing strong diagnostic
baselines such as GPT-4o, DeepSeek-R1, and other medical-specific frameworks
for both common and rare disease diagnosis under in-distribution and
out-of-distribution settings. Moreover, ablation studies on reward design and
retrieval corpus components confirm their critical roles, underscoring the
uniqueness and effectiveness of our approach compared with traditional
implementations. Finally, case studies and interpretability analyses highlight
improvements in Deep-DxSearch’s diagnostic policy, providing deeper insight
into its performance gains and supporting clinicians in delivering more
reliable and precise preliminary diagnoses. See
https://github.com/MAGIC-AI4Med/Deep-DxSearch.