Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning – Takara TLDR

China reportedly discouraged purchase of NVIDIA AI chips due to ‘insulting’ Lutnick statements

Tool-space interference in the MCP era: Designing for agent compatibility at scale

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Google DeepMind

DeepMind x UCL | Deep Learning Lectures | 11/12 | Modern Latent Variable Models

By Advanced AI EditorApril 22, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email



This lecture, by DeepMind Research Scientist Andriy Mnih, explores latent variable models, a powerful and flexible framework for generative modelling. After introducing this framework along with the concept of inference, which is central to it, Andriy focuses on two types of modern latent variable models: invertible models and intractable models. Special emphasis is placed on understanding variational inference as a key to training intractable latent variable models.

Note this lecture was originally advertised as lecture 9.

Download the slides here:

Find out more about how DeepMind increases access to science here:

Speak Bio:

Andriy Mnih is a Research Scientist at DeepMind. He works on generative modelling, representation learning, variational inference, and gradient estimation for stochastic computation graphs. He did his PhD on learning representations of discrete data at the University of Toronto, where he was advised by Geoff Hinton. Prior to joining DeepMind, Andriy was a post-doctoral researcher at the Gatsby Unit, University College London, working with Yee Whye Teh.

About the lecture series:

The Deep Learning Lecture Series is a collaboration between DeepMind and the UCL Centre for Artificial Intelligence. Over the past decade, Deep Learning has evolved as the leading artificial intelligence paradigm providing us with the ability to learn complex functions from raw data at unprecedented accuracy and scale. Deep Learning has been applied to problems in object recognition, speech recognition, speech synthesis, forecasting, scientific computing, control and many more. The resulting applications are touching all of our lives in areas such as healthcare and medical research, human-computer interaction, communication, transport, conservation, manufacturing and many other fields of human endeavour. In recognition of this huge impact, the 2019 Turing Award, the highest honour in computing, was awarded to pioneers of Deep Learning.

In this lecture series, research scientists from leading AI research lab, DeepMind, deliver 12 lectures on an exciting selection of topics in Deep Learning, ranging from the fundamentals of training neural networks via advanced ideas around memory, attention, and generative modelling to the important topic of responsible innovation.

source

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleLive demo of GPT4-o voice variation
Next Article Michael Levin: Biology, Life, Aliens, Evolution, Embryogenesis & Xenobots | Lex Fridman Podcast #325
Advanced AI Editor
  • Website

Related Posts

Genie 3: An infinite world model with Shlomi Fruchter and Jack Parker-Holder

August 22, 2025

Can AI help to save endangered birds?

August 8, 2025

Genie 3: Creating dynamic worlds that you can navigate in real-time

August 5, 2025
Leave A Reply

Latest Posts

Sally Mann Says Her Black Men Photos Are ‘Problematic’ in Hindsight

National Gallery and Tate Have ‘Bad Blood’—and More Art News

Christie’s Will Auction The First Calculating Machine In History

The Art Market Isn’t Dying. The Way We Write About It Might Be.

Latest Posts

AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning – Takara TLDR

September 11, 2025

China reportedly discouraged purchase of NVIDIA AI chips due to ‘insulting’ Lutnick statements

September 11, 2025

Tool-space interference in the MCP era: Designing for agent compatibility at scale

September 11, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning – Takara TLDR
  • China reportedly discouraged purchase of NVIDIA AI chips due to ‘insulting’ Lutnick statements
  • Tool-space interference in the MCP era: Designing for agent compatibility at scale
  • Sally Mann Says Her Black Men Photos Are ‘Problematic’ in Hindsight
  • Peak bubble – by Gary Marcus

Recent Comments

  1. RichardBub on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. RobertDew on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. GilbertDix on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. JamesMub on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. Lamartex on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.