Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

7 Questions To Ask Legal Tech Vendors Today – Artificial Lawyer

Stephen Ehikian says GSA is primed for a ‘build back’ phase after his departure

YouTube’s multi-language audio feature for dubbing videos rolls out to all creators

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
arXiv AI

Cost-Efficient Continual Learning via Weight Space Consolidation

By Advanced AI EditorMay 22, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


[Submitted on 11 Feb 2025 (v1), last revised 20 May 2025 (this version, v3)]

View a PDF of the paper titled Memory Is Not the Bottleneck: Cost-Efficient Continual Learning via Weight Space Consolidation, by Dongkyu Cho and 4 other authors

View PDF
HTML (experimental)

Abstract:Continual learning (CL) has traditionally emphasized minimizing exemplar memory usage, assuming that memory is the primary bottleneck. However, in modern computing environments-particularly those involving large foundation models-memory is inexpensive and abundant, while GPU time constitutes the main cost. This paper re-examines CL under a more realistic setting with sufficient exemplar memory, where the system can retain a representative portion of past data. We find that, under this regime, stability improves due to reduced forgetting, but plasticity diminishes as the model becomes biased toward prior tasks and struggles to adapt to new ones. Notably, even simple baselines like naive replay can match or exceed the performance of state-of-the-art methods at a fraction of the computational cost. Building on this insight, we propose a lightweight yet effective method called Weight Space Consolidation, which directly operates in the model’s weight space via two core mechanisms: (1) rank-based parameter resets to recover plasticity, and (2) weight averaging to enhance stability. Our approach outperforms strong baselines across class-incremental learning with image classifiers and continual instruction tuning with large language models, while requiring only one-third to one-fourth of the training cost. These findings challenge long-standing CL assumptions and establish a new, cost-efficient baseline for real-world continual learning systems where exemplar memory is no longer the limiting factor.

Submission history

From: Dongkyu Cho [view email]
[v1]
Tue, 11 Feb 2025 05:40:52 UTC (223 KB)
[v2]
Thu, 20 Mar 2025 20:55:12 UTC (228 KB)
[v3]
Tue, 20 May 2025 20:59:50 UTC (516 KB)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleAbstracts: Zero-shot models in single-cell biology with Alex Lu
Next Article New Claude 4 AI model refactored code for 7 hours straight
Advanced AI Editor
  • Website

Related Posts

LTLCrit: A Temporal Logic-based LLM Critic for Safe and Efficient Embodied Agents

July 8, 2025

From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection

July 8, 2025

VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots

July 8, 2025
Leave A Reply

Latest Posts

Ralph Rugoff to Leave London’s Hayward Gallery After 20 Years

New York Foundation for the Arts Workers Move to Unionize

Patrizia Sandretto Re Rebaudengo Teams Up with New Museum

Growing Support for Parthenon Marbles’ Return to Greece, More Art News

Latest Posts

7 Questions To Ask Legal Tech Vendors Today – Artificial Lawyer

September 11, 2025

Stephen Ehikian says GSA is primed for a ‘build back’ phase after his departure

September 11, 2025

YouTube’s multi-language audio feature for dubbing videos rolls out to all creators

September 10, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • 7 Questions To Ask Legal Tech Vendors Today – Artificial Lawyer
  • Stephen Ehikian says GSA is primed for a ‘build back’ phase after his departure
  • YouTube’s multi-language audio feature for dubbing videos rolls out to all creators
  • Jus Mundi Launches Agentic Tool, Explains How It Works – Artificial Lawyer
  • Parallel-R1: Towards Parallel Thinking via Reinforcement Learning – Takara TLDR

Recent Comments

  1. Bill on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. Travisnak on C3 AI Stock Is Soaring Today: Here’s Why – C3.ai (NYSE:AI)
  3. Rogerelose on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. Juniorfar on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. Christiane on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.