Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

C3.ai: Stay Patient Through The Transition (NYSE:AI)

Automated Structured Radiology Report Generation with Rich Clinical Context – Takara TLDR

The ghost in the machine

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
arXiv AI

Assessing the Impact of Model Reliability on Annotation Accuracy

By Advanced AI EditorJune 10, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


[Submitted on 11 Feb 2025 (v1), last revised 9 Jun 2025 (this version, v2)]

View a PDF of the paper titled Human-in-the-Loop Annotation for Image-Based Engagement Estimation: Assessing the Impact of Model Reliability on Annotation Accuracy, by Sahana Yadnakudige Subramanya and 3 other authors

View PDF
HTML (experimental)

Abstract:Human-in-the-loop (HITL) frameworks are increasingly recognized for their potential to improve annotation accuracy in emotion estimation systems by combining machine predictions with human expertise. This study focuses on integrating a high-performing image-based emotion model into a HITL annotation framework to evaluate the collaborative potential of human-machine interaction and identify the psychological and practical factors critical to successful collaboration. Specifically, we investigate how varying model reliability and cognitive framing influence human trust, cognitive load, and annotation behavior in HITL systems. We demonstrate that model reliability and psychological framing significantly impact annotators’ trust, engagement, and consistency, offering insights into optimizing HITL frameworks. Through three experimental scenarios with 29 participants–baseline model reliability (S1), fabricated errors (S2), and cognitive bias introduced by negative framing (S3)–we analyzed behavioral and qualitative data. Reliable predictions in S1 yielded high trust and annotation consistency, while unreliable outputs in S2 led to increased critical evaluations but also heightened frustration and response variability. Negative framing in S3 revealed how cognitive bias influenced participants to perceive the model as more relatable and accurate, despite misinformation regarding its reliability. These findings highlight the importance of both reliable machine outputs and psychological factors in shaping effective human-machine collaboration. By leveraging the strengths of both human oversight and automated systems, this study establishes a scalable HITL framework for emotion annotation and lays the foundation for broader applications in adaptive learning and human-computer interaction.

Submission history

From: Ko Watanabe [view email]
[v1]
Tue, 11 Feb 2025 09:37:10 UTC (1,386 KB)
[v2]
Mon, 9 Jun 2025 07:17:01 UTC (845 KB)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleChinese Ritual Bronzes Used For Almost 3,000 Years On Display In NYC
Next Article OpenAI’s annualised revenue hits $10 billion, up from $5.5 billion in December 2024
Advanced AI Editor
  • Website

Related Posts

LTLCrit: A Temporal Logic-based LLM Critic for Safe and Efficient Embodied Agents

July 8, 2025

From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection

July 8, 2025

VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots

July 8, 2025
Leave A Reply

Latest Posts

Former ARTnews Publisher Dies at 97

National Gallery of Art Closes as a Result of Government Shutdown

Almine Rech Closes London Gallery After More Than a Decade

Record Exec and Art Collector Gets Over 4 Years

Latest Posts

C3.ai: Stay Patient Through The Transition (NYSE:AI)

October 6, 2025

Automated Structured Radiology Report Generation with Rich Clinical Context – Takara TLDR

October 6, 2025

The ghost in the machine

October 6, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • C3.ai: Stay Patient Through The Transition (NYSE:AI)
  • Automated Structured Radiology Report Generation with Rich Clinical Context – Takara TLDR
  • The ghost in the machine
  • LongCodeZip: Compress Long Context for Code Language Models – Takara TLDR
  • VIRTUE: Visual-Interactive Text-Image Universal Embedder – Takara TLDR

Recent Comments

  1. 1gocasino.com on 13 AI-Focused Storage Offerings On Display At Nvidia GTC 2025
  2. 비아몰 on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. BrandonUttep on Marc Raibert: Boston Dynamics and the Future of Robotics | Lex Fridman Podcast #412
  4. Edwardloogy on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. BrandonUttep on Study: AI-Powered Research Prowess Now Outstrips Human Experts, Raising Bioweapon Risks

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.