Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

College ‘not working great for most people’: OpenAI’s Stanford dropout CEO Sam Altman

Acree opens up new enterprise-focused, customizable AI model AFM-4.5B trained on ‘clean, rigorously filtered data’

Spotify hints at a more chatty voice AI interface in the future

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
arXiv AI

A Robust Plug-and-Play Watermarking Framework against Model Extraction Attacks

By Advanced AI EditorJune 5, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


[Submitted on 16 Jan 2025 (v1), last revised 4 Jun 2025 (this version, v3)]

View a PDF of the paper titled Neural Honeytrace: A Robust Plug-and-Play Watermarking Framework against Model Extraction Attacks, by Yixiao Xu and 6 other authors

View PDF
HTML (experimental)

Abstract:Developing high-performance deep learning models is resource-intensive, leading model owners to utilize Machine Learning as a Service (MLaaS) platforms instead of publicly releasing their models. However, malicious users may exploit query interfaces to execute model extraction attacks, reconstructing the target model’s functionality locally. While prior research has investigated triggerable watermarking techniques for asserting ownership, existing methods face significant challenges: (1) most approaches require additional training, resulting in high overhead and limited flexibility, and (2) they often fail to account for advanced attackers, leaving them vulnerable to adaptive attacks.

In this paper, we propose Neural Honeytrace, a robust plug-and-play watermarking framework against model extraction attacks. We first formulate a watermark transmission model from an information-theoretic perspective, providing an interpretable account of the principles and limitations of existing triggerable watermarking. Guided by the model, we further introduce: (1) a similarity-based training-free watermarking method for plug-and-play and flexible watermarking, and (2) a distribution-based multi-step watermark information transmission strategy for robust watermarking. Comprehensive experiments on four datasets demonstrate that Neural Honeytrace outperforms previous methods in efficiency and resisting adaptive attacks. Neural Honeytrace reduces the average number of samples required for a worst-case t-Test-based copyright claim from 193,252 to 1,857 with zero training cost. The code is available at this https URL.

Submission history

From: Yixiao Xu [view email]
[v1]
Thu, 16 Jan 2025 06:59:20 UTC (4,198 KB)
[v2]
Fri, 17 Jan 2025 06:50:23 UTC (4,198 KB)
[v3]
Wed, 4 Jun 2025 02:14:47 UTC (5,463 KB)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation
Next Article OpenAI gives ChatGPT access to cloud-based documents and third-party research tools
Advanced AI Editor
  • Website

Related Posts

LTLCrit: A Temporal Logic-based LLM Critic for Safe and Efficient Embodied Agents

July 8, 2025

From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection

July 8, 2025

VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots

July 8, 2025
Leave A Reply

Latest Posts

Artlogic, ArtCloud Merge in Bid to Shape Art World’s Digital Backbone

Met Museum Trustee Among Those Killed in NYC Shooting

John Roberts Prevented Firing of National Portrait Gallery Director

At Comic-Con, George Lucas Previews Forthcoming Lucas Museum

Latest Posts

College ‘not working great for most people’: OpenAI’s Stanford dropout CEO Sam Altman

July 30, 2025

Acree opens up new enterprise-focused, customizable AI model AFM-4.5B trained on ‘clean, rigorously filtered data’

July 30, 2025

Spotify hints at a more chatty voice AI interface in the future

July 30, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • College ‘not working great for most people’: OpenAI’s Stanford dropout CEO Sam Altman
  • Acree opens up new enterprise-focused, customizable AI model AFM-4.5B trained on ‘clean, rigorously filtered data’
  • Spotify hints at a more chatty voice AI interface in the future
  • Introducing ChatGPT Study Mode
  • Meta’s AI spending spree is Wall Street’s focus in second-quarter earnings – NBC New York

Recent Comments

  1. ScottFlist on OpenAI Loses 4 Key Researchers to Meta
  2. binance on Nvidia CEO Jensen Huang calls US ban on H20 AI chip ‘deeply painful’
  3. binance on OpenAI updates its new Responses API rapidly with MCP support, GPT-4o native image gen, and more enterprise features
  4. binance kód on Anthropic closes $2.5 billion credit facility as Wall Street continues plunging money into AI boom – NBC Los Angeles
  5. 🖨 🔵 Incoming Message: 1.95 Bitcoin from exchange. Claim transfer => https://graph.org/ACTIVATE-BTC-TRANSFER-07-23?hs=40f06aae45d2dc14b01045540f836756& 🖨 on SFC Dialogue丨Jeffrey Sachs says he uses DeepSeek every hour_to_facts_its

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.