Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

MIT’s new tech enables robots to act in real time, plan thousands of moves in seconds

Nebius Stock Soars on $1B AI Funding, Analyst Sees 75% Upside

AI disruption rises, VC optimism cools in H1 2025

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » A New Perspective into Time Series Interpretability
arXiv AI

A New Perspective into Time Series Interpretability

Advanced AI BotBy Advanced AI BotApril 7, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


[Submitted on 2 Sep 2024 (v1), last revised 3 Apr 2025 (this version, v3)]

View a PDF of the paper titled Explanation Space: A New Perspective into Time Series Interpretability, by Shahbaz Rezaei and Xin Liu

View PDF
HTML (experimental)

Abstract:Human understandable explanation of deep learning models is essential for various critical and sensitive applications. Unlike image or tabular data where the importance of each input feature (for the classifier’s decision) can be directly projected into the input, time series distinguishable features (e.g. dominant frequency) are often hard to manifest in time domain for a user to easily understand. Additionally, most explanation methods require a baseline value as an indication of the absence of any feature. However, the notion of lack of feature, which is often defined as black pixels for vision tasks or zero/mean values for tabular data, is not well-defined in time series. Despite the adoption of explainable AI methods (XAI) from tabular and vision domain into time series domain, these differences limit the application of these XAI methods in practice. In this paper, we propose a simple yet effective method that allows a model originally trained on the time domain to be interpreted in other explanation spaces using existing methods. We suggest five explanation spaces, each of which can potentially alleviate these issues in certain types of time series. Our method can be easily integrated into existing platforms without any changes to trained models or XAI methods. The code will be released upon acceptance.

Submission history

From: Shahbaz Rezaei [view email]
[v1]
Mon, 2 Sep 2024 16:15:26 UTC (2,142 KB)
[v2]
Thu, 5 Sep 2024 02:00:12 UTC (2,142 KB)
[v3]
Thu, 3 Apr 2025 19:21:19 UTC (3,896 KB)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleMIT’s Xstrings facilitates 3D printing parts with embedded actuation | VoxelMatters
Next Article Use OpenAI to find profitable stocks during the historic dip
Advanced AI Bot
  • Website

Related Posts

[2505.22108] Inclusive, Differentially Private Federated Learning for Clinical Data

June 7, 2025

Human-AI Agent Decision Alignment Architecture

June 6, 2025

Automated Skill Discovery for Language Agents through Exploration and Iterative Feedback

June 6, 2025
Leave A Reply Cancel Reply

Latest Posts

Original Prototype for Jane Birkin’s Hermes Bag Consigned to Sotheby’s

Viral Trump Vs. Musk Feud Ignites A Meme Chain Reaction

UK Art Dealer Sentenced To 2.5 Years In Jail For Selling Art to Suspected Hezbollah Financier

Artists Accuse Dealer Reco Sturgis of Withholding Payments and Artworks

Latest Posts

MIT’s new tech enables robots to act in real time, plan thousands of moves in seconds

June 7, 2025

Nebius Stock Soars on $1B AI Funding, Analyst Sees 75% Upside

June 7, 2025

AI disruption rises, VC optimism cools in H1 2025

June 7, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.