Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

TC-LoRA: Temporally Modulated Conditional LoRA for Adaptive Diffusion Control – Takara TLDR

US, China leaders will avoid ‘race to the bottom’ on trade, Alibaba’s Joe Tsai says

MIT rejects Trump funding compact, ignites academic freedom showdown

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Manufacturing AI

Vibe analytics for data insights that are simple to surface 

By Advanced AI EditorOctober 13, 2025No Comments5 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Every business, big or small, has a wealth of valuable data that can inform impactful decisions. But to extract insights, there’s usually a good deal of manual work that needs to be done on raw data, either by semitechnical users (such as founders and product leaders), or dedicated – and expensive – data specialists. 

Either way, to produce real value, information has to be collected, shepherded, altered, and drawn from dozens of spreadsheets and different business platforms: the organisation’s CRM, its martech stack, e-commerce system, and website data, to name a few common examples. Clearly, that’s a time consuming process, and the outcomes can be old news, rather than up-to-the-minute insights. 

Introducing vibe analytics 

The ideal business solution would be querying real-time data using natural language (vs writing code in SQL or Python), with smart systems working in the background to correlate and parse different data sources and formats. This is vibe analysis, where users can simply ask questions in plain language and let AI do the heavy lifting. Instead of manual data-wrestling and business users spending hours uncovering insights hidden deep in datasets, they get results fast — in text, graphics, summaries, and, where needed, detailed breakdowns. 

Fast and accurate data analysis is important to every organisation, but for many, real-time insights are crucial. In the agricultural sector, for example, Lumo uses Fabi.ai’s platform to manage large fleets of IoT devices, collecting telemetry data continuously and adjusting its systems based on collated, normalised, and parsed information. 

Using vibe analysis, Lumo sees device performance immediately, as well as trends that develop over time. It pulls in weather data, and correlates the device fleet’s performance metrics with environmental factors. The data dashboards Lumo has built are not the result of many months of work writing data integration routines and front-end coding, but are a result of vibe analysis. 

Getting under the hood 

Sceptics of AI’s abilities often point to vibe-coding as an example of where things can go wrong, raising concerns about quality control and the “black box” nature of AI-driven analysis. Many users want visibility into how results are generated, with the option to inspect logic, tweak queries, or adjust API calls to ensure accuracy. When done well, vibe analytics addresses these concerns by combining transparency with rigour. Natural language inputs and modular build methods make it accessible to semitechnical users (such as founders and product leaders), while the underlying systems meet the accuracy and reliability standards expected by technical teams. This means users can trust the output whether they’re working independently or in collaboration with data scientists and developers. 

Designed specifically for both data experts and semitechnical data users, Fabi is a generative BI platform that brings vibe analysis done right to life. The code it produces can be hidden away entirely, or shown verbatim and edited in place, giving semitechnical users a chance to understand how the analysis works under the hood, while allowing technical teams to verify and fine-tune the system’s output. Data flows from an organisation’s systems (the platform mediates connections) or is uploaded. The resultant actionable insights can be pushed/scheduled to email, slack, google sheets, displayed in graphics, text, or a mixture of both. 

Fabi: A generative BI platform

Co-founder and CEO of Fabi, Marc Dupuis, describes how many organisations start using the analysis platform by testing workflows and queries on sample data before progressing to real-world analysis. As users delve into data troves and test their work, they can check its veracity, often in collaboration with someone more technically astute, thanks to the platform’s open, transparent view of Smartbooks to show what’s happening under the hood. It works the other way, too: semitechnical data users can confirm that the data being processed is relevant and accurate. 

To address common concerns about quality control and “black-box” AI, Fabi limits vibe analysis to internally controlled, carefully accessed data sources, with built-in guardrails. Code can be shown verbatim and edited in place, giving semitechnical users visibility into how results are produced, while allowing technical teams to audit, verify, and fine-tune outputs. Collaborative sharing of reports, findings, and working code helps teams validate results without working outside their areas of expertise.

Typical workflows include real-time KPI dashboards; natural-language Q&A over operational and product data; correlation analyses (for example, device performance against weather conditions); cohort and trend exploration; A/B test readouts and experiment summaries; and scheduled, shareable reports that mix text, graphics, summaries, and detailed breakdowns. These collaborative workflows are designed to be efficient and intuitive, so, whether working collectively or solo, users can unlock insights from even the most complex data arrangements. 

Fabi landed its first round of backing from Eniac Ventures in 2023, so it’s a company on the move. The team continues to expand its capabilities, with plans to make vibe analysis even more seamless for both semitechnical and technical users. Organisations interested in exploring the platform can start by testing workflows on sample data, then scale up to real-world use cases as they grow more confident in the system’s transparency and accuracy.

(Photo by Alina Grubnyak)

See also: Generative AI trends 2025: LLMs, data scaling & enterprise adoption

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events, click here for more information.

AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleToledo Museum of Art Director on Digital Art, AI, and Future-Proofing
Next Article OpenAI Codex rivals Claude Code
Advanced AI Editor
  • Website

Related Posts

Meta and Oracle choose NVIDIA Spectrum-X for AI data centres

October 13, 2025

Cisco AI router solves data centre interconnect challenge

October 9, 2025

How AI is changing the way we travel

October 7, 2025

Comments are closed.

Latest Posts

Artist Behind Canterbury Cathedral Art Responds to JD Vance, Elon Musk

Toledo Museum of Art Director on Digital Art, AI, and Future-Proofing

Smithsonian Closes Museums Amid Government Shutdown

The Rubin Names 2025 Art Prize, Research and Art Projects Grants

Latest Posts

TC-LoRA: Temporally Modulated Conditional LoRA for Adaptive Diffusion Control – Takara TLDR

October 13, 2025

US, China leaders will avoid ‘race to the bottom’ on trade, Alibaba’s Joe Tsai says

October 13, 2025

MIT rejects Trump funding compact, ignites academic freedom showdown

October 13, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • TC-LoRA: Temporally Modulated Conditional LoRA for Adaptive Diffusion Control – Takara TLDR
  • US, China leaders will avoid ‘race to the bottom’ on trade, Alibaba’s Joe Tsai says
  • MIT rejects Trump funding compact, ignites academic freedom showdown
  • This new AI technique creates ‘digital twin’ consumers, and it could kill the traditional survey industry
  • California becomes first state to regulate AI companion chatbots

Recent Comments

  1. Altm.Agency on Build a generative AI enabled virtual IT troubleshooting assistant using Amazon Q Business
  2. Tamara on OpenAI adds the o3-pro model to ChatGPT today
  3. thưởng thức phim sex full hd on VAST Data Powers Smarter, Evolving AI Agents with NVIDIA Data Flywheel
  4. Grantvon on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. Natalie on Essential Tips for a Job Description

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.