Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Step into the future: The full AI Stage at Disrupt 2025

MAPO: Mixed Advantage Policy Optimization – Takara TLDR

Apple develops a lightweight AI for protein folding prediction

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Hugging Face

Zero-Shot Multi-Spectral Learning: Reimagining a Generalist Multimodal Gemini 2.5 Model for Remote Sensing Applications – Takara TLDR

By Advanced AI EditorSeptember 24, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Multi-spectral imagery plays a crucial role in diverse Remote Sensing
applications including land-use classification, environmental monitoring and
urban planning. These images are widely adopted because their additional
spectral bands correlate strongly with physical materials on the ground, such
as ice, water, and vegetation. This allows for more accurate identification,
and their public availability from missions, such as Sentinel-2 and Landsat,
only adds to their value. Currently, the automatic analysis of such data is
predominantly managed through machine learning models specifically trained for
multi-spectral input, which are costly to train and support. Furthermore,
although providing a lot of utility for Remote Sensing, such additional inputs
cannot be used with powerful generalist large multimodal models, which are
capable of solving many visual problems, but are not able to understand
specialized multi-spectral signals.
To address this, we propose a training-free approach which introduces new
multi-spectral data in a Zero-Shot-only mode, as inputs to generalist
multimodal models, trained on RGB-only inputs. Our approach leverages the
multimodal models’ understanding of the visual space, and proposes to adapt to
inputs to that space, and to inject domain-specific information as instructions
into the model. We exemplify this idea with the Gemini2.5 model and observe
strong Zero-Shot performance gains of the approach on popular Remote Sensing
benchmarks for land cover and land use classification and demonstrate the easy
adaptability of Gemini2.5 to new inputs. These results highlight the potential
for geospatial professionals, working with non-standard specialized inputs, to
easily leverage powerful multimodal models, such as Gemini2.5, to accelerate
their work, benefiting from their rich reasoning and contextual capabilities,
grounded in the specialized sensor data.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleMicrosoft incorporates Anthropic’s Claude AI into 365 Copilot
Next Article Tesla Service just made a simple change for iOS users that makes a big difference
Advanced AI Editor
  • Website

Related Posts

MAPO: Mixed Advantage Policy Optimization – Takara TLDR

September 25, 2025

VIR-Bench: Evaluating Geospatial and Temporal Understanding of MLLMs via Travel Video Itinerary Reconstruction – Takara TLDR

September 24, 2025

Reinforcement Learning on Pre-Training Data – Takara TLDR

September 24, 2025

Comments are closed.

Latest Posts

Art Dealer Mary Boone Says Prison Was ‘Very Relaxing’

New Research Supports Theory of Hidden Vermeer Self-Portrait

John Singer Sargent Paintings Expected to Bring In $12-15 Million

John Giorno’s Decades-Long Project Dial-A-Poem Is Now Online

Latest Posts

Step into the future: The full AI Stage at Disrupt 2025

September 25, 2025

MAPO: Mixed Advantage Policy Optimization – Takara TLDR

September 25, 2025

Apple develops a lightweight AI for protein folding prediction

September 25, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Step into the future: The full AI Stage at Disrupt 2025
  • MAPO: Mixed Advantage Policy Optimization – Takara TLDR
  • Apple develops a lightweight AI for protein folding prediction
  • CreateAI Launches Animon AI Anime Platform in China
  • Kevin Rose on Digg, reinvention, and startup investing

Recent Comments

  1. HenryJow on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. TamoxiNolva on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. Calvinclabe on OpenAI countersues Elon Musk, calls for enjoinment from ‘further unlawful and unfair action’
  4. Michaelsex on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. zanyglitteroctopus5Nalay on German data protection official wants Apple, Google to remove DeepSeek from the country’s app stores

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.