Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

REDtone and GPTBots Partner to Bring Enterprise AI

Hiring Trends 2025: What’s Getting Cut (and What Isn’t)

Can the Software Segment Remain a Key Growth Driver for IBM? – September 24, 2025

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Manufacturing AI

Governing the age of agentic AI: autonomy vs. accountability

By Advanced AI EditorSeptember 24, 2025No Comments5 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Author: Rodrigo Coutinho, Co-Founder and AI Product Manager at OutSystems

AI has moved beyond pilot projects and future promises. Today, it’s embedded in industries, with more than three-quarters of organisations (78%) now using AI in at least one business function. The next leap, however, is agentic AI: systems that don’t just provide insights or automate narrow tasks but operate as autonomous agents, capable of adapting to changing inputs, connecting with other systems, and influencing business-critical decisions. Although these agents will deliver greater value, agentic AI also poses challenges.

Imagine agents that proactively resolve customer issues in real-time or adapt applications dynamically to meet shifting business priorities. The greater autonomy inevitably brings new risks. Without the right safeguards, AI agents may drift from their intended purpose or make choices that clash with business rules, regulations, or ethical standards. Navigating this new era requires stronger oversight, where human judgement, governance frameworks, and transparency are built-in from the start. The potential of agentic AI is vast but so are the obligations that come with deployment. Low-code platforms offer one path forward, serving as a control layer between autonomous agents and enterprise systems. By embedding governance and compliance into development, they give organisations the confidence that AI-driven processes will advance strategic goals without adding unnecessary risk.

Designing safeguards instead of code for agentic AI

Agentic AI marks a steep change in how people interact with software. It’s indicative of a fundamental shift in the relationship between people and software. Traditionally, developers have focused on building applications with clear requirements and predictable outputs. Now, instead of fragmented applications, teams will orchestrate entire ecosystems of agents that interact with people, systems and data. 

As these systems mature, developers shift from writing code line by line to defining the safeguards that steer them. Because these agents adapt and may respond differently to the same input, transparency and accountability must be built in from the start. By embedding oversight and compliance into design, developers ensure AI-driven decisions stay reliable, explainable and aligned with business goals. The change demands that developers and IT leaders embrace a broader supervisor role, guiding both technological and organisational change over time. 

Why transparency and control matter in agentic AI

Greater autonomy exposes organisations to additional vulnerabilities. According to a recent OutSystems study, 64% of technology leaders cite governance, trust and safety as top concerns when deploying AI agents at scale. Without strong safeguards, these risks extend beyond compliance gaps to include security breaches and reputational damage. Opacity in agentic systems makes it difficult for leaders to understand or validate decisions, eroding confidence internally and with customers, leading to concrete risks.

Left unchecked, autonomous agents can blur accountability, widen the attack surface and create inconsistency at scale. Without visibility into why an AI system acts, organisations risk losing accountability in critical workflows. At the same time, agents that interact in sensitive data and systems expand the attack surface for cyber threats, while un-monitored “agent sprawl” can create redundancy, fragmentation and inconsistent decisions. Together, these challenges underscore the need for strong governance frameworks that maintain trust and control as autonomy scales. 

Scaling AI safely with low-code foundations

Crucially, adopting agentic AI need not involve rebuilding governance from the ground up. Organisations have multiple approaches available to them, including low-code platforms, which offer a reliable, scalable framework where security, compliance and governance are already part of the development fabric.

Across enterprises, IT teams are being asked to embed agents into operations without disrupting what already works. With the right frameworks, IT teams can deploy AI agents directly into enterprise-wide operations without disrupting current workflows or re-architecting core systems. Organisations have full control over how AI agents operate at every step, ultimately building trust to scale confidently in the enterprise.

Low-code places governance, security and scalability at the heart of AI adoption. By unifying app and agent development in a single environment, it is easier to embed compliance and oversight from the start. The ability to integrate seamlessly in enterprise systems, combined with built-in DevSecOps practices, ensures that vulnerabilities are addressed before deployment. And with out-of-the-box infrastructure, organisations can scale confidently without having to reinvent foundational elements of governance or security.

The approach lets organisations pilot and scale agentic AI while keeping compliance and security intact. Low-code makes it easier to deliver with speed and security, giving developers and IT leaders confidence to progress.

Smarter oversight for smarter systems

Ultimately, low-code provides a dependable route to scaling autonomous AI while preserving trust. By unifying app and agent development in one environment, low-code embeds compliance and oversight from the start. Seamless integration in systems and built-in DevSecOps practices help address vulnerabilities before deployment, while ready-made infrastructure enables scale without reinventing governance from scratch. For developers and IT leaders, this shift means moving beyond writing code to guiding the rules and safeguards that shape autonomous systems. In a fast-changing landscape, low-code provides the flexibility and resilience needed to experiment confidently, embrace innovation early, and maintain trust as AI grows more autonomous.

Author: Rodrigo Coutinho, Co-Founder and AI Product Manager at OutSystems

(Image by Alexandra_Koch)

See also: Agentic AI: Promise, scepticism, and its meaning for Southeast Asia

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events, click here for more information.

AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleWondershare ToMoviee 2.0 AI Ranks Third on VBench Leaderboard, Showcasing Next-Generation Video Generation Capabilities
Next Article Tesla Robotaxi heads to a new major Texas city for the first time
Advanced AI Editor
  • Website

Related Posts

OpenAI and Nvidia plan $100B chip deal for AI future

September 24, 2025

Yext Scout Guides Brands Through AI Search Challenges

September 11, 2025

Marketing AI boom faces crisis of consumer trust

August 29, 2025

Comments are closed.

Latest Posts

Art Dealer Mary Boone Says Prison Was ‘Very Relaxing’

New Research Supports Theory of Hidden Vermeer Self-Portrait

John Singer Sargent Paintings Expected to Bring In $12-15 Million

John Giorno’s Decades-Long Project Dial-A-Poem Is Now Online

Latest Posts

REDtone and GPTBots Partner to Bring Enterprise AI

September 24, 2025

Hiring Trends 2025: What’s Getting Cut (and What Isn’t)

September 24, 2025

Can the Software Segment Remain a Key Growth Driver for IBM? – September 24, 2025

September 24, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • REDtone and GPTBots Partner to Bring Enterprise AI
  • Hiring Trends 2025: What’s Getting Cut (and What Isn’t)
  • Can the Software Segment Remain a Key Growth Driver for IBM? – September 24, 2025
  • x402 Foundation AI micropayments by Coinbase, Cloudflare
  • Cohere’s valuation hits $7 billion USD following $100-million round extension

Recent Comments

  1. zestyflamingo8Nalay on Curiosity, Grit Matter More Than Ph.D to Work at OpenAI: ChatGPT Boss
  2. DavidBar on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. https://aviaz.ru/ on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. KennethTut on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. MichaelThype on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.