Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Vibe coding has turned senior devs into ‘AI babysitters,’ but they say it’s worth it

Anthropic Claude now has memory, catching up to competitors Gemini and ChatGPT

Karen Hao on the Empire of AI, AGI evangelists, and the cost of belief

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
TechCrunch AI

‘Selling coffee beans to Starbucks’ – how the AI boom could leave AI’s biggest companies behind

By Advanced AI EditorSeptember 14, 2025No Comments5 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


How much do foundation models matter?

It might seem like a silly question, but it’s come up a lot in my conversations with AI startups, which are increasingly comfortable with businesses that used to be dismissed as “GPT wrappers,” or companies that build interfaces on top of existing AI models like ChatGPT. These days, startup teams are focused on customizing AI models for specific tasks and interface work, and see the foundation model as a commodity that can be swapped in and out as necessary. That approach was on display especially at last week’s Boxworks conference, which seemed devoted entirely to the user-facing software built on top of AI models.

Part of what is driving this is that the scaling benefits of pre-training — that initial process of teaching AI models using massive datasets, which is the sole domain of foundation models — has slowed down. That doesn’t mean AI has stopped making progress, but the early benefits of hyperscaled foundational models have hit diminishing returns, and attention has turned to post-training and reinforcement learning as sources of future progress. If you want to make a better AI coding tool, you’re better off working on fine-tuning and interface design rather than spending another few billion dollars worth in server time on pre-training. As the success of Anthropic’s Claude Code shows, foundation model companies are quite good at these other fields too — but it’s not as durable an advantage as it used to be.

In short, the competitive landscape of AI is changing in ways that undermine the advantages of the biggest AI labs. Instead of a race for an all-powerful AGI that could match or exceed human abilities across all cognitive tasks, the immediate future looks like a flurry of discrete businesses: software development, enterprise data management, image generation and so on. Aside from a first-mover advantage, it’s not clear that building a foundation model gives you any advantage in those businesses. Worse, the abundance of open-source alternatives means that foundation models may not have any price leverage if they lose the competition at the application layer. This would turn companies like OpenAI and Anthropic into back-end suppliers in a low-margin commodity business – as one founder put it to me, “like selling coffee beans to Starbucks.” 

It’s hard to overstate what a dramatic shift this would be for the business of AI. Throughout the contemporary boom, the success of AI has been inextricable from the success of the companies building foundation models — specifically, OpenAI, Anthropic, and Google. Being bullish on AI meant believing that AI’s transformative impact would make these into generationally important companies. We could argue about which company would come out on top, but it was clear that some foundation model company was going to end up with the keys to the kingdom.

At the time, there were lots of reasons to think this was true. For years, foundation model development was the only AI business there was — and the fast pace of progress made their lead seem insurmountable. And Silicon Valley has always had a deep-rooted love of platform advantage. The assumption was that, however AI models ended up making money, the lion’s share of the benefit would flow back to the foundation model companies, who had done the work that was hardest to replicate.

The past year has made that story more complicated. There are lots of successful third-party AI services, but they tend to use foundation models interchangeably. For startups, it no longer matters whether their product sits on top of GPT-5, Claude or Gemini, and they expect to be able to switch models in mid-release without end users noticing the difference. Foundation models continue to make real progress, but it no longer seems plausible for any one company to maintain a large enough advantage to dominate the industry.

Techcrunch event

San Francisco
|
October 27-29, 2025

We already have plenty of indication that there is not much of a first-mover advantage. As venture capitalist Martin Casado of a16z pointed out on a recent podcast, OpenAI was the first lab to put out a coding model, as well as generative models for image and video — only to lose all three categories to competitors. “As far as we can tell, there is no inherent moat in the technology stack for AI,” Casado concluded.

Of course, we shouldn’t count foundation model companies out just yet. There are still lots of durable advantages on their side, including brand recognition, infrastructure, and unthinkably vast cash reserves. OpenAI’s consumer business may prove harder to replicate than its coding business, and other advantages may emerge as the sector matures. Given the fast pace of AI development, the current interest in post-training could easily reverse course in the next six months. Most uncertain of all, the race toward general intelligence could pay off with new breakthroughs in pharmaceuticals or materials science, radically shifting our ideas about what makes AI models valuable.

But in the meantime, the strategy of building ever-bigger foundation models looks a lot less appealing than it did last year — and Meta’s billion-dollar spending spree is starting to look awfully risky.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleIBM announced the world’s first HDD, the 3.75MB RAMAC 350 disk storage unit, 69 years ago today — unit weighed more than a ton, 50 platters ran at 1,200 RPM
Next Article Google faces its first AI Overviews lawsuit from a major US publisher
Advanced AI Editor
  • Website

Related Posts

Vibe coding has turned senior devs into ‘AI babysitters,’ but they say it’s worth it

September 14, 2025

Karen Hao on the Empire of AI, AGI evangelists, and the cost of belief

September 14, 2025

California lawmakers pass AI safety bill SB 53 — but Newsom could still veto

September 13, 2025

Comments are closed.

Latest Posts

Ohio Auction of Two Paintings Looted By Nazis Halted By Foundation

Lee Ufan Painting at Center of Bribery Investigation in Korea

Drought Reveals 40 Ancient Tombs in Northern Iraqi Reservoir

Artifacts Removed from Gaza Building Before Suspected Israeli Strike

Latest Posts

Vibe coding has turned senior devs into ‘AI babysitters,’ but they say it’s worth it

September 14, 2025

Anthropic Claude now has memory, catching up to competitors Gemini and ChatGPT

September 14, 2025

Karen Hao on the Empire of AI, AGI evangelists, and the cost of belief

September 14, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Vibe coding has turned senior devs into ‘AI babysitters,’ but they say it’s worth it
  • Anthropic Claude now has memory, catching up to competitors Gemini and ChatGPT
  • Karen Hao on the Empire of AI, AGI evangelists, and the cost of belief
  • Verizon gives customers another reason to be angry
  • DeepMind’s Demis Hassabis says calling AI PhD Intelligences is ‘Nonsense’

Recent Comments

  1. zappyglitterkoala8Nalay on Sam & Jony introduce io
  2. zappyglitterkoala8Nalay on Implement human-in-the-loop confirmation with Amazon Bedrock Agents
  3. zappyglitterkoala8Nalay on This AI Hallucinates Images For You
  4. zanyglitterpeacock4Nalay on MIT’s Xstrings facilitates 3D printing parts with embedded actuation | VoxelMatters
  5. glimmerfizzytoad7Nalay on MIT’s Xstrings facilitates 3D printing parts with embedded actuation | VoxelMatters

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.