Flow-based 3D generation models typically require dozens of sampling steps
during inference. Though few-step distillation methods, particularly
Consistency Models (CMs), have achieved substantial advancements in
accelerating 2D diffusion models, they remain under-explored for more complex
3D generation tasks. In this study, we propose a novel framework, MDT-dist, for
few-step 3D flow distillation. Our approach is built upon a primary objective:
distilling the pretrained model to learn the Marginal-Data Transport. Directly
learning this objective needs to integrate the velocity fields, while this
integral is intractable to be implemented. Therefore, we propose two
optimizable objectives, Velocity Matching (VM) and Velocity Distillation (VD),
to equivalently convert the optimization target from the transport level to the
velocity and the distribution level respectively. Velocity Matching (VM) learns
to stably match the velocity fields between the student and the teacher, but
inevitably provides biased gradient estimates. Velocity Distillation (VD)
further enhances the optimization process by leveraging the learned velocity
fields to perform probability density distillation. When evaluated on the
pioneer 3D generation framework TRELLIS, our method reduces sampling steps of
each flow transformer from 25 to 1 or 2, achieving 0.68s (1 step x 2) and 0.94s
(2 steps x 2) latency with 9.0x and 6.5x speedup on A800, while preserving high
visual and geometric fidelity. Extensive experiments demonstrate that our
method significantly outperforms existing CM distillation methods, and enables
TRELLIS to achieve superior performance in few-step 3D generation.