Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Training-Free Group Relative Policy Optimization – Takara TLDR

Singapore company allegedly helped China smuggle $2 billion worth of Nvidia AI processors, report claims — Nvidia denies that the accused has any China ties, but a U.S. investigation is underway

Memory Retrieval and Consolidation in Large Language Models through Function Tokens – Takara TLDR

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Hugging Face

Paper page – AgentTTS: Large Language Model Agent for Test-time Compute-optimal Scaling Strategy in Complex Tasks

By Advanced AI EditorAugust 5, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


AgentTTS, an LLM-agent-based framework, optimizes compute allocation for multi-stage complex tasks, improving performance and robustness compared to traditional methods.

Test-time scaling (TTS) enhances the performance of large language models
(LLMs) by allocating additional compute resources during inference. However,
existing research primarily investigates TTS in single-stage tasks; while many
real-world problems are multi-stage complex tasks, composed of a sequence of
heterogeneous subtasks with each subtask requires LLM of specific capability.
Therefore, we study a novel problem: the test-time compute-optimal scaling in
multi-stage complex tasks, aiming to select suitable models and allocate
budgets per subtask to maximize overall performance. TTS in multi-stage tasks
introduces two fundamental challenges: (i) The combinatorial search space of
model and budget allocations, combined with the high cost of inference, makes
brute-force search impractical. (ii) The optimal model and budget allocations
across subtasks are interdependent, increasing the complexity of the
compute-optimal search. To address this gap, we conduct extensive pilot
experiments on four tasks across six datasets, deriving three empirical
insights characterizing the behavior of LLMs in multi-stage complex tasks.
Informed by these insights, we propose AgentTTS, an LLM-agent-based framework
that autonomously searches for compute-optimal allocations through iterative
feedback-driven interactions with the execution environment. Experimental
results demonstrate that AgentTTS significantly outperforms traditional and
other LLM-based baselines in search efficiency, and shows improved robustness
to varying training set sizes and enhanced interpretability.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleBP CEO hails exploration discovery boon after surprise profit beat
Next Article How PolyAI’s voice agents are reinventing customer service
Advanced AI Editor
  • Website

Related Posts

Training-Free Group Relative Policy Optimization – Takara TLDR

October 12, 2025

Memory Retrieval and Consolidation in Large Language Models through Function Tokens – Takara TLDR

October 12, 2025

LLMs Learn to Deceive Unintentionally: Emergent Misalignment in Dishonesty from Misaligned Samples to Biased Human-AI Interactions – Takara TLDR

October 11, 2025

Comments are closed.

Latest Posts

The Rubin Names 2025 Art Prize, Research and Art Projects Grants

Kochi-Muziris Biennial Announces 66 Artists for December Exhibition

Instagram Launches ‘Rings’ Awards for Creators—With KAWS as a Judge

Museums Prepare to Close Their Doors as Government Shutdown Continues

Latest Posts

Training-Free Group Relative Policy Optimization – Takara TLDR

October 12, 2025

Singapore company allegedly helped China smuggle $2 billion worth of Nvidia AI processors, report claims — Nvidia denies that the accused has any China ties, but a U.S. investigation is underway

October 12, 2025

Memory Retrieval and Consolidation in Large Language Models through Function Tokens – Takara TLDR

October 12, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Training-Free Group Relative Policy Optimization – Takara TLDR
  • Singapore company allegedly helped China smuggle $2 billion worth of Nvidia AI processors, report claims — Nvidia denies that the accused has any China ties, but a U.S. investigation is underway
  • Memory Retrieval and Consolidation in Large Language Models through Function Tokens – Takara TLDR
  • When You Tell AI Models to Act Like Women, Most Become More Risk-Averse: Study
  • Is vibe coding ruining a generation of engineers?

Recent Comments

  1. RoyalThroneF3Nalay on Trump’s Tech Sanctions To Empower China, Betray America
  2. RandomTwistY6Nalay on Implement human-in-the-loop confirmation with Amazon Bedrock Agents
  3. RoyalThroneF3Nalay on TEFAF New York Illuminates Art Week With Mastery Of Vivid, Radiant Color
  4. NeonPulseQ7Nalay on OpenAI expects subscription revenue to nearly double to $10bn
  5. Starla on Perplexity AI’s Comet browser will streak across the web this month

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.