Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

This Indian With IIT, MIT Degree Could Have Received Rs 800 Crore Joining Bonus Ast Meta! – Trak.in

Beijing Is Using Soft Power to Gain Global Dominance

Alibaba previews its first AI-powered glasses, joining China’s heated smart wearable race

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
MIT News

MIT vision system teaches robots to understand their bodies

By Advanced AI EditorJuly 26, 2025No Comments7 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


a robot arm holding a pencil at MIT.

A 3D-printed robotic arm holds a pencil as it trains using random movements and a single camera — part of a new control system called Neural Jacobian Fields (NJF). Rather than relying on sensors or hand-coded models, NJF allows robots to learn how their bodies move in response to motor commands purely from visual observation, offering a pathway to more flexible, affordable, and self-aware robots. | Credit: MIT

In an office at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), a soft robotic hand carefully curls its fingers to grasp a small object. The intriguing part isn’t the mechanical design or embedded sensors — in fact, the hand contains none. Instead, the entire system relies on a single camera that watches the robot’s movements and uses that visual data to control it.

This capability comes from a new system CSAIL scientists developed, offering a different perspective on robotic control. Rather than using hand-designed models or complex sensor arrays, it allows robots to learn how their bodies respond to control commands, solely through vision. The approach, called Neural Jacobian Fields (NJF), gives robots a kind of bodily self-awareness. An open-access paper about the work was published in Nature on June 25.

“This work points to a shift from programming robots to teaching robots,” says Sizhe Lester Li, MIT PhD student in electrical engineering and computer science, CSAIL affiliate, and lead researcher on the work. “Today, many robotics tasks require extensive engineering and coding. In the future, we envision showing a robot what to do, and letting it learn how to achieve the goal autonomously.”

The motivation stems from a simple but powerful reframing: The main barrier to affordable, flexible robotics isn’t hardware — it’s control of capability, which could be achieved in multiple ways. Traditional robots are built to be rigid and sensor-rich, making it easier to construct a digital twin, a precise mathematical replica used for control. But when a robot is soft, deformable, or irregularly shaped, those assumptions fall apart. Rather than forcing robots to match our models, NJF flips the script — giving robots the ability to learn their own internal model from observation.

Look and learn

This decoupling of modeling and hardware design could significantly expand the design space for robotics. In soft and bio-inspired robots, designers often embed sensors or reinforce parts of the structure just to make modeling feasible. NJF lifts that constraint. The system doesn’t need onboard sensors or design tweaks to make control possible. Designers are freer to explore unconventional, unconstrained morphologies without worrying about whether they’ll be able to model or control them later.

“Think about how you learn to control your fingers: you wiggle, you observe, you adapt,” said Li. “That’s what our system does. It experiments with random actions and figures out which controls move which parts of the robot.”

The system has proven robust across a range of robot types. The team tested NJF on a pneumatic soft robotic hand capable of pinching and grasping, a rigid Allegro hand, a 3D-printed robotic arm, and even a rotating platform with no embedded sensors. In every case, the system learned both the robot’s shape and how it responded to control signals, just from vision and random motion.

The researchers see potential far beyond the lab. Robots equipped with NJF could one day perform agricultural tasks with centimeter-level localization accuracy, operate on construction sites without elaborate sensor arrays, or navigate dynamic environments where traditional methods break down.

At the core of NJF is a neural network that captures two intertwined aspects of a robot’s embodiment: its three-dimensional geometry and its sensitivity to control inputs. The system builds on neural radiance fields (NeRF), a technique that reconstructs 3D scenes from images by mapping spatial coordinates to color and density values. NJF extends this approach by learning not only the robot’s shape, but also a Jacobian field, a function that predicts how any point on the robot’s body moves in response to motor commands.

To train the model, the robot performs random motions while multiple cameras record the outcomes. No human supervision or prior knowledge of the robot’s structure is required — the system simply infers the relationship between control signals and motion by watching.

Once training is complete, the robot only needs a single monocular camera for real-time closed-loop control, running at about 12 Hertz. This allows it to continuously observe itself, plan, and act responsively. That speed makes NJF more viable than many physics-based simulators for soft robots, which are often too computationally intensive for real-time use.

In early simulations, even simple 2D fingers and sliders were able to learn this mapping using just a few examples. By modeling how specific points deform or shift in response to action, NJF builds a dense map of controllability. That internal model allows it to generalize motion across the robot’s body, even when the data are noisy or incomplete.

“What’s really interesting is that the system figures out on its own which motors control which parts of the robot,” said Li. “This isn’t programmed — it emerges naturally through learning, much like a person discovering the buttons on a new device.”

The future is soft

For decades, robotics has favored rigid, easily modeled machines — like the industrial arms found in factories — because their properties simplify control. But the field has been moving toward soft, bio-inspired robots that can adapt to the real world more fluidly. The trade-off? These robots are harder to model.

“Robotics today often feels out of reach because of costly sensors and complex programming. Our goal with Neural Jacobian Fields is to lower the barrier, making robotics affordable, adaptable, and accessible to more people. Vision is a resilient, reliable sensor,” said senior author and MIT assistant professor Vincent Sitzmann, who leads the Scene Representation group. “It opens the door to robots that can operate in messy, unstructured environments, from farms to construction sites, without expensive infrastructure.”

“Vision alone can provide the cues needed for localization and control — eliminating the need for GPS, external tracking systems, or complex onboard sensors. This opens the door to robust, adaptive behavior in unstructured environments, from drones navigating indoors or underground without maps to mobile manipulators working in cluttered homes or warehouses, and even legged robots traversing uneven terrain,” said co-author Daniela Rus, MIT professor of electrical engineering and computer science and director of CSAIL. “By learning from visual feedback, these systems develop internal models of their own motion and dynamics, enabling flexible, self-supervised operation where traditional localization methods would fail.”

While training NJF currently requires multiple cameras and must be redone for each robot, the researchers are already imagining a more accessible version. In the future, hobbyists could record a robot’s random movements with their phone, much like you’d take a video of a rental car before driving off, and use that footage to create a control model, with no prior knowledge or special equipment required.

The system doesn’t yet generalize across different robots, and it lacks force or tactile sensing, limiting its effectiveness on contact-rich tasks. But the team is exploring new ways to address these limitations: improving generalization, handling occlusions, and extending the model’s ability to reason over longer spatial and temporal horizons.

“Just as humans develop an intuitive understanding of how their bodies move and respond to commands, NJF gives robots that kind of embodied self-awareness through vision alone,” said Li. “This understanding is a foundation for flexible manipulation and control in real-world environments. Our work, essentially, reflects a broader trend in robotics: moving away from manually programming detailed models toward teaching robots through observation and interaction.”

Editor’s Note: This article was republished from MIT News.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleTesla Optimus robots will ship with a design no consumer has seen yet
Next Article What to expect from Tesla CEO Elon Musk’s new Master Plan
Advanced AI Editor
  • Website

Related Posts

This Indian With IIT, MIT Degree Could Have Received Rs 800 Crore Joining Bonus Ast Meta! – Trak.in

July 27, 2025

MIT faces backlash for not expelling anti-Israel protesters over ‘visa issues’: ‘Who is in charge?’

July 26, 2025

MIT student interrupts math lecture to chant ‘Free Palestine’

July 26, 2025

Comments are closed.

Latest Posts

David Geffen Sued By Estranged Husband for Breach of Contract

Auction House Will Sell Egyptian Artifact Despite Concern From Experts

Anish Kapoor Lists New York Apartment for $17.75 M.

Street Fighter 6 Community Rocked by AI Art Controversy

Latest Posts

This Indian With IIT, MIT Degree Could Have Received Rs 800 Crore Joining Bonus Ast Meta! – Trak.in

July 27, 2025

Beijing Is Using Soft Power to Gain Global Dominance

July 27, 2025

Alibaba previews its first AI-powered glasses, joining China’s heated smart wearable race

July 27, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • This Indian With IIT, MIT Degree Could Have Received Rs 800 Crore Joining Bonus Ast Meta! – Trak.in
  • Beijing Is Using Soft Power to Gain Global Dominance
  • Alibaba previews its first AI-powered glasses, joining China’s heated smart wearable race
  • Monitor AI’s Decision-Making Black Box: Here’s Why
  • ChatGPT therapy conversations may not be private, warns OpenAI CEO Sam Altman

Recent Comments

  1. Rejestracja on Online Education – How I Make My Videos
  2. Anonymous on AI, CEOs, and the Wild West of Streaming
  3. MichaelWinty on Local gov’t reps say they look forward to working with Thomas
  4. 4rabet mirror on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  5. Janine Bethel on OpenAI research reveals that simply teaching AI a little ‘misinformation’ can turn it into an entirely unethical ‘out-of-the-way AI’

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.