Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

China PM warns against a global AI ‘monopoly’

MIT faces backlash for not expelling anti-Israel protesters over ‘visa issues’: ‘Who is in charge?’

New QWEN 3 Coder : Did the Benchmark’s Lie?

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
VentureBeat AI

New AI architecture delivers 100x faster reasoning than LLMs with just 1,000 training examples

By Advanced AI EditorJuly 26, 2025No Comments8 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Want smarter insights in your inbox? Sign up for our weekly newsletters to get only what matters to enterprise AI, data, and security leaders. Subscribe Now

Singapore-based AI startup Sapient Intelligence has developed a new AI architecture that can match, and in some cases vastly outperform, large language models (LLMs) on complex reasoning tasks, all while being significantly smaller and more data-efficient.

The architecture, known as the Hierarchical Reasoning Model (HRM), is inspired by how the human brain utilizes distinct systems for slow, deliberate planning and fast, intuitive computation. The model achieves impressive results with a fraction of the data and memory required by today’s LLMs. This efficiency could have important implications for real-world enterprise AI applications where data is scarce and computational resources are limited.

The limits of chain-of-thought reasoning

When faced with a complex problem, current LLMs largely rely on chain-of-thought (CoT) prompting, breaking down problems into intermediate text-based steps, essentially forcing the model to “think out loud” as it works toward a solution.

While CoT has improved the reasoning abilities of LLMs, it has fundamental limitations. In their paper, researchers at Sapient Intelligence argue that “CoT for reasoning is a crutch, not a satisfactory solution. It relies on brittle, human-defined decompositions where a single misstep or a misorder of the steps can derail the reasoning process entirely.”

The AI Impact Series Returns to San Francisco – August 5

The next phase of AI is here – are you ready? Join leaders from Block, GSK, and SAP for an exclusive look at how autonomous agents are reshaping enterprise workflows – from real-time decision-making to end-to-end automation.

Secure your spot now – space is limited: https://bit.ly/3GuuPLF

This dependency on generating explicit language tethers the model’s reasoning to the token level, often requiring massive amounts of training data and producing long, slow responses. This approach also overlooks the type of “latent reasoning” that occurs internally, without being explicitly articulated in language.

As the researchers note, “A more efficient approach is needed to minimize these data requirements.”

A hierarchical approach inspired by the brain

To move beyond CoT, the researchers explored “latent reasoning,” where instead of generating “thinking tokens,” the model reasons in its internal, abstract representation of the problem. This is more aligned with how humans think; as the paper states, “the brain sustains lengthy, coherent chains of reasoning with remarkable efficiency in a latent space, without constant translation back to language.”

However, achieving this level of deep, internal reasoning in AI is challenging. Simply stacking more layers in a deep learning model often leads to a “vanishing gradient” problem, where learning signals weaken across layers, making training ineffective. An alternative, recurrent architectures that loop over computations can suffer from “early convergence,” where the model settles on a solution too quickly without fully exploring the problem.

hierarchical reasoning model
The Hierarchical Reasoning Model (HRM) is inspired by the structure of the brain Source: arXiv

Seeking a better approach, the Sapient team turned to neuroscience for a solution. “The human brain provides a compelling blueprint for achieving the effective computational depth that contemporary artificial models lack,” the researchers write. “It organizes computation hierarchically across cortical regions operating at different timescales, enabling deep, multi-stage reasoning.”

Inspired by this, they designed HRM with two coupled, recurrent modules: a high-level (H) module for slow, abstract planning, and a low-level (L) module for fast, detailed computations. This structure enables a process the team calls “hierarchical convergence.” Intuitively, the fast L-module addresses a portion of the problem, executing multiple steps until it reaches a stable, local solution. At that point, the slow H-module takes this result, updates its overall strategy, and gives the L-module a new, refined sub-problem to work on. This effectively resets the L-module, preventing it from getting stuck (early convergence) and allowing the entire system to perform a long sequence of reasoning steps with a lean model architecture that doesn’t suffer from vanishing gradients.

HRM (left) smoothly converges on the solution across computation cycles and avoids early convergence (center, RNNs) and vanishing gradients (right, classic deep neural networks) Source: arXiv

According to the paper, “This process allows the HRM to perform a sequence of distinct, stable, nested computations, where the H-module directs the overall problem-solving strategy and the L-module executes the intensive search or refinement required for each step.” This nested-loop design allows the model to reason deeply in its latent space without needing long CoT prompts or huge amounts of data.

A natural question is whether this “latent reasoning” comes at the cost of interpretability. Guan Wang, Founder and CEO of Sapient Intelligence, pushes back on this idea, explaining that the model’s internal processes can be decoded and visualized, similar to how CoT provides a window into a model’s thinking. He also points out that CoT itself can be misleading. “CoT does not genuinely reflect a model’s internal reasoning,” Wang told VentureBeat, referencing studies showing that models can sometimes yield correct answers with incorrect reasoning steps, and vice versa. “It remains essentially a black box.”

Example of how HRM reasons over a maze problem across different compute cycles Source: arXiv

HRM in action

To test their model, the researchers pitted HRM against benchmarks that require extensive search and backtracking, such as the Abstraction and Reasoning Corpus (ARC-AGI), extremely difficult Sudoku puzzles and complex maze-solving tasks.

The results show that HRM learns to solve problems that are intractable for even advanced LLMs. For instance, on the “Sudoku-Extreme” and “Maze-Hard” benchmarks, state-of-the-art CoT models failed completely, scoring 0% accuracy. In contrast, HRM achieved near-perfect accuracy after being trained on just 1,000 examples for each task.

On the ARC-AGI benchmark, a test of abstract reasoning and generalization, the 27M-parameter HRM scored 40.3%. This surpasses leading CoT-based models like the much larger o3-mini-high (34.5%) and Claude 3.7 Sonnet (21.2%). This performance, achieved without a large pre-training corpus and with very limited data, highlights the power and efficiency of its architecture.

HRM outperforms large models on complex reasoning tasks Source: arXiv

While solving puzzles demonstrates the model’s power, the real-world implications lie in a different class of problems. According to Wang, developers should continue using LLMs for language-based or creative tasks, but for “complex or deterministic tasks,” an HRM-like architecture offers superior performance with fewer hallucinations. He points to “sequential problems requiring complex decision-making or long-term planning,” especially in latency-sensitive fields like embodied AI and robotics, or data-scarce domains like scientific exploration. 

In these scenarios, HRM doesn’t just solve problems; it learns to solve them better. “In our Sudoku experiments at the master level… HRM needs progressively fewer steps as training advances—akin to a novice becoming an expert,” Wang explained.

For the enterprise, this is where the architecture’s efficiency translates directly to the bottom line. Instead of the serial, token-by-token generation of CoT, HRM’s parallel processing allows for what Wang estimates could be a “100x speedup in task completion time.” This means lower inference latency and the ability to run powerful reasoning on edge devices. 

The cost savings are also substantial. “Specialized reasoning engines such as HRM offer a more promising alternative for specific complex reasoning tasks compared to large, costly, and latency-intensive API-based models,” Wang said. To put the efficiency into perspective, he noted that training the model for professional-level Sudoku takes roughly two GPU hours, and for the complex ARC-AGI benchmark, between 50 and 200 GPU hours—a fraction of the resources needed for massive foundation models. This opens a path to solving specialized business problems, from logistics optimization to complex system diagnostics, where both data and budget are finite.

Looking ahead, Sapient Intelligence is already working to evolve HRM from a specialized problem-solver into a more general-purpose reasoning module. “We are actively developing brain-inspired models built upon HRM,” Wang said, highlighting promising initial results in healthcare, climate forecasting, and robotics. He teased that these next-generation models will differ significantly from today’s text-based systems, notably through the inclusion of self-correcting capabilities. 

The work suggests that for a class of problems that have stumped today’s AI giants, the path forward may not be bigger models, but smarter, more structured architectures inspired by the ultimate reasoning engine: the human brain.

Daily insights on business use cases with VB Daily

If you want to impress your boss, VB Daily has you covered. We give you the inside scoop on what companies are doing with generative AI, from regulatory shifts to practical deployments, so you can share insights for maximum ROI.

Read our Privacy Policy

Thanks for subscribing. Check out more VB newsletters here.

An error occured.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleAI referrals to top websites were up 357% year-over-year in June, reaching 1.13B
Next Article Meta is trying to win the AI race. A new partnership with AWS could help
Advanced AI Editor
  • Website

Related Posts

Shengjia Zhao named Meta Superintelligence Chief Scientist

July 26, 2025

CoSyn: The open-source tool that’s making GPT-4V-level vision AI accessible to everyone

July 25, 2025

Anthropic unveils ‘auditing agents’ to test for AI misalignment

July 25, 2025

Comments are closed.

Latest Posts

David Geffen Sued By Estranged Husband for Breach of Contract

Auction House Will Sell Egyptian Artifact Despite Concern From Experts

Anish Kapoor Lists New York Apartment for $17.75 M.

Street Fighter 6 Community Rocked by AI Art Controversy

Latest Posts

China PM warns against a global AI ‘monopoly’

July 26, 2025

MIT faces backlash for not expelling anti-Israel protesters over ‘visa issues’: ‘Who is in charge?’

July 26, 2025

New QWEN 3 Coder : Did the Benchmark’s Lie?

July 26, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • China PM warns against a global AI ‘monopoly’
  • MIT faces backlash for not expelling anti-Israel protesters over ‘visa issues’: ‘Who is in charge?’
  • New QWEN 3 Coder : Did the Benchmark’s Lie?
  • MIT student interrupts math lecture to chant ‘Free Palestine’
  • Major Health Insurers Slash Prior Authorization Requirements, Transforming the PA Technology Landscape

Recent Comments

  1. MichaelWinty on Local gov’t reps say they look forward to working with Thomas
  2. 4rabet mirror on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  3. Janine Bethel on OpenAI research reveals that simply teaching AI a little ‘misinformation’ can turn it into an entirely unethical ‘out-of-the-way AI’
  4. 打开Binance账户 on Tanka CEO Kisson Lin to talk AI-native startups at Sessions: AI
  5. Sign up to get 100 USDT on The Do LaB On Capturing Lightning In A Bottle

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.