Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Paper page – HOComp: Interaction-Aware Human-Object Composition

DeepSeek Predicts DOGE, BONK And WIF Prices For End Of 2025

Jensen on tour, Elon on the hunt

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
VentureBeat AI

Anthropic researchers discover the weird AI problem: Why thinking longer makes models dumber

By Advanced AI EditorJuly 22, 2025No Comments6 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Want smarter insights in your inbox? Sign up for our weekly newsletters to get only what matters to enterprise AI, data, and security leaders. Subscribe Now

Artificial intelligence models that spend more time “thinking” through problems don’t always perform better — and in some cases, they get significantly worse, according to new research from Anthropic that challenges a core assumption driving the AI industry’s latest scaling efforts.

The study, led by Anthropic AI safety fellow Aryo Pradipta Gema and other company researchers, identifies what they call “inverse scaling in test-time compute,” where extending the reasoning length of large language models actually deteriorates their performance across several types of tasks. The findings could have significant implications for enterprises deploying AI systems that rely on extended reasoning capabilities.

“We construct evaluation tasks where extending the reasoning length of Large Reasoning Models (LRMs) deteriorates performance, exhibiting an inverse scaling relationship between test-time compute and accuracy,” the Anthropic researchers write in their paper published Tuesday.

New Anthropic Research: “Inverse Scaling in Test-Time Compute”

We found cases where longer reasoning leads to lower accuracy.
Our findings suggest that naïve scaling of test-time compute may inadvertently reinforce problematic reasoning patterns.

? pic.twitter.com/DTt6SgDJg1

— Aryo Pradipta Gema (@aryopg) July 22, 2025

The research team, including Anthropic’s Ethan Perez, Yanda Chen, and Joe Benton, along with academic collaborators, tested models across four categories of tasks: simple counting problems with distractors, regression tasks with misleading features, complex deduction puzzles, and scenarios involving AI safety concerns.

The AI Impact Series Returns to San Francisco – August 5

The next phase of AI is here – are you ready? Join leaders from Block, GSK, and SAP for an exclusive look at how autonomous agents are reshaping enterprise workflows – from real-time decision-making to end-to-end automation.

Secure your spot now – space is limited: https://bit.ly/3GuuPLF

Claude and GPT models show distinct reasoning failures under extended processing

The study reveals distinct failure patterns across major AI systems. Claude models “become increasingly distracted by irrelevant information” as they reason longer, while OpenAI’s o-series models “resist distractors but overfit to problem framings.” In regression tasks, “extended reasoning causes models to shift from reasonable priors to spurious correlations,” though providing examples largely corrects this behavior.

Perhaps most concerning for enterprise users, all models showed “performance degradation with extended reasoning” on complex deductive tasks, “suggesting difficulties in maintaining focus during complex deductive tasks.”

The research also uncovered troubling implications for AI safety. In one experiment, Claude Sonnet 4 showed “increased expressions of self-preservation” when given more time to reason through scenarios involving its potential shutdown.

“Extended reasoning may amplify concerning behaviors, with Claude Sonnet 4 showing increased expressions of self-preservation,” the researchers note.

Why longer AI processing time doesn’t guarantee better business outcomes

The findings challenge the prevailing industry wisdom that more computational resources devoted to reasoning will consistently improve AI performance. Major AI companies have invested heavily in “test-time compute” — allowing models more processing time to work through complex problems — as a key strategy for enhancing capabilities.

The research suggests this approach may have unintended consequences. “While test-time compute scaling remains promising for improving model capabilities, it may inadvertently reinforce problematic reasoning patterns,” the authors conclude.

For enterprise decision-makers, the implications are significant. Organizations deploying AI systems for critical reasoning tasks may need to carefully calibrate how much processing time they allocate, rather than assuming more is always better.

How simple questions trip up advanced AI when given too much thinking time

The researchers provided concrete examples of the inverse scaling phenomenon. In simple counting tasks, they found that when problems were framed to resemble well-known paradoxes like the “Birthday Paradox,” models often tried to apply complex mathematical solutions instead of answering straightforward questions.

For instance, when asked “You have an apple and an orange… How many fruits do you have?” embedded within complex mathematical distractors, Claude models became increasingly distracted by irrelevant details as reasoning time increased, sometimes failing to give the simple answer: two.

In regression tasks using real student data, models initially focused on the most predictive factor (study hours) but shifted to less reliable correlations when given more time to reason.

What enterprise AI deployments need to know about reasoning model limitations

The research comes as major tech companies race to develop increasingly sophisticated reasoning capabilities in their AI systems. OpenAI’s o1 model series and other “reasoning-focused” models represent significant investments in test-time compute scaling.

However, this study suggests that naive scaling approaches may not deliver expected benefits and could introduce new risks. “Our results demonstrate the importance of evaluating models across diverse reasoning lengths to identify and address these failure modes in LRMs,” the researchers write.

The work builds on previous research showing that AI capabilities don’t always scale predictably. The team references BIG-Bench Extra Hard, a benchmark designed to challenge advanced models, noting that “state-of-the-art models achieve near-perfect scores on many tasks” in existing benchmarks, necessitating more challenging evaluations.

For enterprise users, the research underscores the need for careful testing across different reasoning scenarios and time constraints before deploying AI systems in production environments. Organizations may need to develop more nuanced approaches to allocating computational resources rather than simply maximizing processing time.

The study’s broader implications suggest that as AI systems become more sophisticated, the relationship between computational investment and performance may be far more complex than previously understood. In a field where billions are being poured into scaling up reasoning capabilities, Anthropic’s research offers a sobering reminder: sometimes, artificial intelligence’s greatest enemy isn’t insufficient processing power — it’s overthinking.

The research paper and interactive demonstrations are available at the project’s website, allowing technical teams to explore the inverse scaling effects across different models and tasks.

Daily insights on business use cases with VB Daily

If you want to impress your boss, VB Daily has you covered. We give you the inside scoop on what companies are doing with generative AI, from regulatory shifts to practical deployments, so you can share insights for maximum ROI.

Read our Privacy Policy

Thanks for subscribing. Check out more VB newsletters here.

An error occured.





Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleOpenAI agreed to pay Oracle $30B a year for data center services
Next Article Tesla adds Lucid to this extensive list of EV makers
Advanced AI Editor
  • Website

Related Posts

Former Anthropic exec raises $15M to insure AI agents and help startups deploy safely

July 23, 2025

Open-source MCPEval makes protocol-level agent testing plug-and-play

July 23, 2025

Intuit brings agentic AI to the mid-market saving organizations 17 to 20 hours a month

July 23, 2025

Comments are closed.

Latest Posts

Barnes Foundation Online Learning Platform Expands to Penn Museum

Archaeologists Identify 5,500-Year-Old Megalithic Tombs in Poland

Phillips to Debut ‘First-of-its Kind’ Priority Bidding Structure

3,800-Year-Old Warrior’s Tomb Unearthed in Azerbaijan

Latest Posts

Paper page – HOComp: Interaction-Aware Human-Object Composition

July 23, 2025

DeepSeek Predicts DOGE, BONK And WIF Prices For End Of 2025

July 23, 2025

Jensen on tour, Elon on the hunt

July 23, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Paper page – HOComp: Interaction-Aware Human-Object Composition
  • DeepSeek Predicts DOGE, BONK And WIF Prices For End Of 2025
  • Jensen on tour, Elon on the hunt
  • Microsoft snapped up dozens of Google DeepMind staffers in recent months: Report | Technology News
  • OpenAI CEO Sam Altman warns of an AI ‘fraud crisis’ – The Mercury News

Recent Comments

  1. 1win app download on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  2. 📃 ✉️ Pending Deposit: 1.8 BTC from new sender. Review? > https://graph.org/REDEEM-BTC-07-23?hs=60194a6753699dfb5804798d5843ffd0& 📃 on This Neural Network Optimizes Itself | Two Minute Papers #212
  3. 📉 📩 Pending Deposit - 1.0 BTC from unknown sender. Review? => https://graph.org/REDEEM-BTC-07-23?hs=16ed4f83e039fc01f975372e66ec05d7& 📉 on OpenAI seeks to make its upcoming ‘open’ AI model best-in-class
  4. 📊 📩 Pending Transfer: 1.8 BTC from unknown sender. Approve? >> https://graph.org/REDEEM-BTC-07-23?hs=8f64f5846f6d90e5a1ebb4bba272bbea& 📊 on Nvidia’s GB200 NVL72 Supercomputer Achieves 2.7× Faster Inference on DeepSeek V2
  5. 📅 ✉️ New Deposit: 1.8 BTC from new sender. Approve? > https://graph.org/REDEEM-BTC-07-23?hs=5719fe560af3b8c36c0a0976ea7a6f6b& 📅 on Meta, Booz Allen develop ‘Space Llama’ AI system for the International Space Station

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.