Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Multi-View 3D Point Tracking – Takara TLDR

Claude.AI teaches users ins, outs of programming code | The Arkansas Democrat-Gazette

IBM to debut Andhra quantum computer by March

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Expert Blogs

Study finds AI tools made open source software developers 19 percent slower

By Advanced AI EditorJuly 14, 2025No Comments3 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Time saved on things like active coding was overwhelmed by the time needed to prompt, wait on, and review AI outputs in the study.

Time saved on things like active coding was overwhelmed by the time needed to prompt, wait on, and review AI outputs in the study.


Credit:

METR

On the surface, METR’s results seem to contradict other benchmarks and experiments that demonstrate increases in coding efficiency when AI tools are used. But those often also measure productivity in terms of total lines of code or the number of discrete tasks/code commits/pull requests completed, all of which can be poor proxies for actual coding efficiency.

Many of the existing coding benchmarks also focus on synthetic, algorithmically scorable tasks created specifically for the benchmark test, making it hard to compare those results to those focused on work with pre-existing, real-world code bases. Along those lines, the developers in METR’s study reported in surveys that the overall complexity of the repos they work with (which average 10 years of age and over 1 million lines of code) limited how helpful the AI could be. The AI wasn’t able to utilize “important tacit knowledge or context” about the codebase, the researchers note, while the “high developer familiarity with [the] repositories” aided their very human coding efficiency in these tasks.

These factors lead the researchers to conclude that current AI coding tools may be particularly ill-suited to “settings with very high quality standards, or with many implicit requirements (e.g., relating to documentation, testing coverage, or linting/formatting) that take humans substantial time to learn.” While those factors may not apply in “many realistic, economically relevant settings” involving simpler code bases, they could limit the impact of AI tools in this study and similar real-world situations.

And even for complex coding projects like the ones studied, the researchers are also optimistic that further refinement of AI tools could lead to future efficiency gains for programmers. Systems that have better reliability, lower latency, or more relevant outputs (via techniques such as prompt scaffolding or fine-tuning) “could speed up developers in our setting,” the researchers write. Already, they say there is “preliminary evidence” that the recent release of Claude 3.7 “can often correctly implement the core functionality of issues on several repositories that are included in our study.”

For now, however, METR’s study provides some strong evidence that AI’s much-vaunted usefulness for coding tasks may have significant limitations in certain complex, real-world coding scenarios.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleAutonomy, Governance, and the New Risk Equation
Next Article How Startups Can Win Talent War
Advanced AI Editor
  • Website

Related Posts

IBM and NASA’s bold new AI predicts solar flares that could smash satellites, wreck grids, and ruin global technology

August 29, 2025

With new in-house models, Microsoft lays the groundwork for independence from OpenAI

August 29, 2025

Zuckerberg’s AI hires disrupt Meta with swift exits and threats to leave

August 29, 2025

Comments are closed.

Latest Posts

Woodmere Art Museum Sues Trump Administration Over Canceled IMLS Grant

Barbara Gladstone’s Chelsea Townhouse in NYC Sells for $13.1 M.

Trump Meets with Smithsonian Leader Amid Threats of Content Review

Australian School Faces Pushback over AI Art Course—and More Art News

Latest Posts

Multi-View 3D Point Tracking – Takara TLDR

August 30, 2025

Claude.AI teaches users ins, outs of programming code | The Arkansas Democrat-Gazette

August 30, 2025

IBM to debut Andhra quantum computer by March

August 30, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Multi-View 3D Point Tracking – Takara TLDR
  • Claude.AI teaches users ins, outs of programming code | The Arkansas Democrat-Gazette
  • IBM to debut Andhra quantum computer by March
  • Social-MAE: A Transformer-Based Multimodal Autoencoder for Face and Voice – Takara TLDR
  • How Grok, ChatGPT, Claude, Perplexity, and Gemini handle your data for AI training

Recent Comments

  1. SydneyUnrem on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. Jamesgok on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. Danielcet on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. xxx on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. Danielcet on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.