arXiv:2507.00050v1 Announce Type: new
Abstract: Human Activity Recognition (HAR), which uses data from Inertial Measurement Unit (IMU) sensors, has many practical applications in healthcare and assisted living environments. However, its use in real-world scenarios has been limited by the lack of comprehensive IMU-based HAR datasets that cover a wide range of activities and the lack of transparency in existing HAR models. Zero-shot HAR (ZS-HAR) overcomes the data limitations, but current models struggle to explain their decisions, making them less transparent. This paper introduces a novel IMU-based ZS-HAR model called the Self-Explainable Zero-shot Human Activity Recognition Network (SEZ-HARN). It can recognize activities not encountered during training and provide skeleton videos to explain its decision-making process. We evaluate the effectiveness of the proposed SEZ-HARN on four benchmark datasets PAMAP2, DaLiAc, HTD-MHAD and MHealth and compare its performance against three state-of-the-art black-box ZS-HAR models. The experiment results demonstrate that SEZ-HARN produces realistic and understandable explanations while achieving competitive Zero-shot recognition accuracy. SEZ-HARN achieves a Zero-shot prediction accuracy within 3\% of the best-performing black-box model on PAMAP2 while maintaining comparable performance on the other three datasets.
Source link