Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Microsoft Layoffs Largest in Years

Cohere looks to capitalize on Montréal’s AI talent with new office

Perplexity AI’s new $200/month subscription is for power users

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Amazon (Titan)
    • Anthropic (Claude 3)
    • Cohere (Command R)
    • Google DeepMind (Gemini)
    • IBM (Watsonx)
    • Inflection AI (Pi)
    • Meta (LLaMA)
    • OpenAI (GPT-4 / GPT-4o)
    • Reka AI
    • xAI (Grok)
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Facebook X (Twitter) Instagram
Advanced AI News
MIT CSAIL

GIST-MIT CSAIL researchers develop a biomechanical dataset for badminton performance analysis

Advanced AI EditorBy Advanced AI EditorJuly 3, 2025No Comments5 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


GIST Researchers Capture Biomechanics of Badminton Players with Sensors and Cameras

image: 

The dataset proposed by the researchers captures badminton players’ movements and  responses, aiding AI-driven coaching assistants to improve stroke quality for all skill levels.

view more 

Credit: SeungJun Kim at Gwangju Institute of Science and Technology (GIST)

In sports training, practice is the key, but being able to emulate the techniques of professional athletes can take a player’s performance to the next level. AI-based personalized sports coaching assistants can make this a reality by utilizing published datasets. With cameras and sensors strategically placed on the athlete’s body, these systems can track everything, including joint movement patterns, muscle activation levels, and gaze movements.

Using this data, personalized feedback is provided on player technique, along with improvement recommendations. Athletes can access this feedback anytime, and anywhere, making these systems versatile for athletes at all levels.

Now, in a study published in the journal Scientific Data on April 5, 2024, researchers led by Associate Professor SeungJun Kim from the Gwangju Institute of Science and Technology (GIST), South Korea, in collaboration with researchers from Massachusetts Institute of Technology (MIT), CSAIL, USA, have developed a MultiSenseBadminton dataset for AI-driven badminton training.

“Badminton could benefit from these various sensors, but there is a scarcity of comprehensive badminton action datasets for analysis and training feedback,” says Ph.D. candidate Minwoo Seong, the first author of the study.

Supported by the 2024 GIST-MIT project, this study took inspiration from MIT’s ActionSense project, which used wearable sensors to track everyday kitchen tasks such as peeling, slicing vegetables, and opening jars. Seong collaborated with MIT’s team, including MIT CSAIL postdoc researcher Joseph DelPreto and MIT CSAIL Director and MIT EECS Professor Daniela Rus and Wojciech Matusik. Together, they developed the MultiSenseBadminton dataset, capturing movements and physiological responses of badminton players. This dataset, shaped with insights from professional badminton coaches, aims to enhance the quality of forehand clear and backhand drive strokes. For this, the researchers collected 23 hours of swing motion data from 25 players with varying levels of training experience.

During the study, players were tasked with repeatedly executing forehand clear and backhand drive shots while sensors recorded their movements and responses. These included inertial measurement units (IMU) sensors to track joint movements, electromyography (EMG) sensors to monitor muscle signals, insole sensors for foot pressure, and a camera to record both body movements and shuttlecock positions. With a total of 7,763 data points collected, each swing was meticulously labeled based on stroke type, player’s skill level, shuttlecock landing position, impact location relative to the player, and sound upon impact. The dataset was then validated using a machine learning model, ensuring its suitability for training AI models to evaluate stroke quality and offer feedback.

“The MultiSenseBadminton dataset can be used to build AI-based education and training systems for racket sports players. By analyzing the disparities in motion and sensor data among different levels of players and creating AI-generated action trajectories, the dataset can be applied to personalized motion guides for each level of players,” says Seong.

The gathered data can enhance training through haptic vibration or electrical muscle stimulation, promoting better motion and refining swing techniques. Additionally, player tracking data, like that in the MultiSenseBadminton dataset, could fuel virtual reality games or training simulations, making sports training more accessible and affordable, potentially transforming how people exercise.

In the long run, the researchers speculate that this dataset could make sports training more accessible and affordable for a broader audience, promote overall well-being, and foster a healthier population.

 

***

 

Reference

DOI: https://doi.org/10.1038/s41597-024-03144-z                                                                                

 

About Gwangju Institute of Science and Technology (GIST)

The Gwangju Institute of Science and Technology (GIST) was founded in 1993 by the Korean government as a research-oriented graduate school to help ensure Korea’s continued economic growth and prosperity by developing advanced science and technology with an emphasis on collaboration with the international community. Since that time, GIST has pioneered a highly regarded undergraduate science curriculum in 2010 that has become a model for other science universities in Korea. To learn more about GIST and its exciting opportunities for researchers and students alike, please visit: http://www.gist.ac.kr/.

 

About the authors

SeungJun Kim is an Associate Professor at the Gwangju Institute of Science and Technology (GIST), overseeing the human-centered intelligent systems laboratory. Previously, he served as a special faculty at the Human-Computer Interaction Institute, Carnegie Mellon University, leading research in XR, robotics, and human-AI interaction. Dr. Kim holds a B.S. in Electrical Engineering from KAIST and an M.S. and Ph.D. in Mechatronics from GIST. His research focuses on sensory intelligence and augmentation through multimodal XR in ubiquitous computing environments, recognized with paper awards from UbiComp, IEEE ISMAR, and ACM AutoUI.

Minwoo Seong is an applied AI researcher and specializes in sensory reconstruction of human motions in real and virtual worlds. Seong holds a B.S. in Mechanical Engineering and an M.S. in Robotics from Gwangju Institute of Science and Technology (GIST), from where he is currently pursuing his Ph.D. Seong’s work has earned recognition, including the Best Paper Award from KCC and a runner-up award at the IJCAI 2023.

Method of Research

Data/statistical analysis

Subject of Research

People

Article Title

MultiSenseBadminton: Wearable Sensor–Based Biomechanical Dataset for Evaluation of Badminton Performance

Article Publication Date

5-Apr-2024

COI Statement

The authors declare no competing interests.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleChatGPT referrals to news sites are growing, but not enough to offset search declines
Next Article SEZ-HARN: Self-Explainable Zero-shot Human Activity Recognition Network
Advanced AI Editor
  • Website

Related Posts

Generative AI can help robots jump higher and land safely

June 28, 2025

New MIT CSAIL study suggests that AI won’t steal as many jobs as expected

June 23, 2025

New MIT CSAIL study suggests that AI won’t steal as many jobs as expected

June 22, 2025
Leave A Reply Cancel Reply

Latest Posts

Khaled Sabsabi Reinstated as Australia’s Venice Biennale Artist

Peter Phillips, British Pop Art Originator, Dies at 86

Hundreds of Ancient Ceramics Found In Preserved Shipwreck in Turkey

Canaletto Auction Record Smashed at Christie’s London

Latest Posts

Microsoft Layoffs Largest in Years

July 3, 2025

Cohere looks to capitalize on Montréal’s AI talent with new office

July 3, 2025

Perplexity AI’s new $200/month subscription is for power users

July 3, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Microsoft Layoffs Largest in Years
  • Cohere looks to capitalize on Montréal’s AI talent with new office
  • Perplexity AI’s new $200/month subscription is for power users
  • Paper page – Depth Anything at Any Condition
  • Transforming network operations with AI: How Swisscom built a network assistant using Amazon Bedrock

Recent Comments

No comments to show.

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.